000153253 001__ 153253
000153253 005__ 20240712084528.0
000153253 0247_ $$2doi$$a10.1063/1.4869289
000153253 0247_ $$2ISSN$$a1077-3118
000153253 0247_ $$2ISSN$$a0003-6951
000153253 0247_ $$2WOS$$aWOS:000334408500002
000153253 0247_ $$2Handle$$a2128/17340
000153253 0247_ $$2altmetric$$aaltmetric:2226059
000153253 037__ $$aFZJ-2014-02903
000153253 082__ $$a530
000153253 1001_ $$0P:(DE-Juel1)130282$$aPaetzold, U. W.$$b0$$eCorresponding Author$$ufzj
000153253 245__ $$aDisorder improves nanophotonic light trapping in thin-film solar cells
000153253 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014
000153253 3367_ $$2DRIVER$$aarticle
000153253 3367_ $$2DataCite$$aOutput Types/Journal article
000153253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1403097774_30218
000153253 3367_ $$2BibTeX$$aARTICLE
000153253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153253 3367_ $$00$$2EndNote$$aJournal Article
000153253 520__ $$aWe present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.
000153253 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000153253 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000153253 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153253 7001_ $$0P:(DE-Juel1)157887$$aSmeets, M.$$b1$$ufzj
000153253 7001_ $$0P:(DE-Juel1)130830$$aMeier, Matthias$$b2$$ufzj
000153253 7001_ $$0P:(DE-Juel1)130219$$aBittkau, K.$$b3$$ufzj
000153253 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, T.$$b4$$ufzj
000153253 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, V.$$b5$$ufzj
000153253 7001_ $$0P:(DE-HGF)0$$aMichaelis, D.$$b6
000153253 7001_ $$0P:(DE-HGF)0$$aWaechter, C.$$b7
000153253 7001_ $$0P:(DE-Juel1)130225$$aCarius, R.$$b8$$ufzj
000153253 7001_ $$0P:(DE-Juel1)143905$$aRau, U.$$b9$$ufzj
000153253 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4869289$$gVol. 104, no. 13, p. 131102 -$$n13$$p131102$$tApplied physics letters$$v104$$x1077-3118$$y2014
000153253 8564_ $$uhttps://juser.fz-juelich.de/record/153253/files/FZJ-2014-02903.pdf$$yOpenAccess
000153253 8767_ $$92014-04-01$$d2014-04-03$$ePublication charges$$jZahlung erfolgt
000153253 909CO $$ooai:juser.fz-juelich.de:153253$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157887$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130830$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000153253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000153253 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000153253 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000153253 9141_ $$y2014
000153253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153253 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153253 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153253 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153253 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153253 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000153253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153253 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000153253 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153253 920__ $$lyes
000153253 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000153253 9801_ $$aFullTexts
000153253 980__ $$ajournal
000153253 980__ $$aVDB
000153253 980__ $$aUNRESTRICTED
000153253 980__ $$aI:(DE-Juel1)IEK-5-20101013
000153253 980__ $$aAPC
000153253 981__ $$aI:(DE-Juel1)IMD-3-20101013