000153256 001__ 153256
000153256 005__ 20210129213710.0
000153256 0247_ $$2doi$$a10.1063/1.4871502
000153256 0247_ $$2ISSN$$a1089-7690
000153256 0247_ $$2ISSN$$a0021-9606
000153256 0247_ $$2WOS$$aWOS:000336047700009
000153256 0247_ $$2Handle$$a2128/19016
000153256 0247_ $$2altmetric$$aaltmetric:2044139
000153256 0247_ $$2pmid$$apmid:24784248
000153256 037__ $$aFZJ-2014-02906
000153256 082__ $$a540
000153256 1001_ $$0P:(DE-Juel1)145847$$aTheophilou, Iris$$b0$$eCorresponding Author$$ufzj
000153256 245__ $$aCharge transfer excitations from excited state Hartree-Fock subsequent minimization scheme
000153256 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014
000153256 3367_ $$2DRIVER$$aarticle
000153256 3367_ $$2DataCite$$aOutput Types/Journal article
000153256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1399276244_3037
000153256 3367_ $$2BibTeX$$aARTICLE
000153256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153256 3367_ $$00$$2EndNote$$aJournal Article
000153256 520__ $$aPhotoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initiomethods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations[M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem.113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys.138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations
000153256 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000153256 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153256 7001_ $$0P:(DE-HGF)0$$aTassi, M.$$b1
000153256 7001_ $$0P:(DE-HGF)0$$aThanos, S.$$b2
000153256 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4871502$$gVol. 140, no. 16, p. 164102 -$$n16$$p164102 $$tThe @journal of chemical physics$$v140$$x1089-7690$$y2014
000153256 8564_ $$uhttps://juser.fz-juelich.de/record/153256/files/FZJ-2014-02906.pdf$$yOpenAccess
000153256 909CO $$ooai:juser.fz-juelich.de:153256$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000153256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145847$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153256 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000153256 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000153256 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000153256 9141_ $$y2014
000153256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153256 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153256 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153256 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153256 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153256 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000153256 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153256 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000153256 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153256 920__ $$lyes
000153256 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000153256 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000153256 980__ $$ajournal
000153256 980__ $$aVDB
000153256 980__ $$aUNRESTRICTED
000153256 980__ $$aI:(DE-Juel1)PGI-1-20110106
000153256 980__ $$aI:(DE-Juel1)IAS-1-20090406
000153256 9801_ $$aFullTexts
000153256 981__ $$aI:(DE-Juel1)IAS-1-20090406