000153312 001__ 153312
000153312 005__ 20221109161708.0
000153312 0247_ $$2doi$$a10.1016/j.amc.2014.02.051
000153312 0247_ $$2ISSN$$a0096-3003
000153312 0247_ $$2ISSN$$a1873-5649
000153312 0247_ $$2WOS$$aWOS:000335898500047
000153312 037__ $$aFZJ-2014-02953
000153312 041__ $$aEnglish
000153312 082__ $$a510
000153312 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding Author$$ufzj
000153312 245__ $$aTowards an efficient use of the BLAS library for multilinear tensor contractions
000153312 260__ $$aNew York, NY$$bElsevier$$c2014
000153312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1398777511_20147
000153312 3367_ $$2DataCite$$aOutput Types/Journal article
000153312 3367_ $$00$$2EndNote$$aJournal Article
000153312 3367_ $$2BibTeX$$aARTICLE
000153312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153312 3367_ $$2DRIVER$$aarticle
000153312 520__ $$aMathematical operators whose transformation rules constitute the building blocks of a multi-linear algebra are widely used in physics and engineering applications where they are very often represented as tensors. In the last century, thanks to the advances in tensor calculus, it was possible to uncover new research fields and make remarkable progress in the existing ones, from electromagnetism to the dynamics of fluids and from the mechanics of rigid bodies to quantum mechanics of many atoms. By now, the formal mathematical and geometrical properties of tensors are well defined and understood; conversely, in the context of scientific and high-performance computing, many tensor-related problems are still open. In this paper, we address the problem of efficiently computing contractions among two tensors of arbitrary dimension by using kernels from the highly optimized BLAS library. In particular, we establish precise conditions to determine if and when GEMM, the kernel for matrix products, can be used. Such conditions take into consideration both the nature of the operation and the storage scheme of the tensors, and induce a classification of the contractions into three groups. For each group, we provide a recipe to guide the users towards the most effective use of BLAS.
000153312 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000153312 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000153312 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153312 7001_ $$0P:(DE-HGF)0$$aFabregat-Traver, Diego$$b1
000153312 7001_ $$0P:(DE-HGF)0$$aQuintana-Ortí, Gregorio$$b2
000153312 7001_ $$0P:(DE-HGF)0$$aBientinesi, Paolo$$b3
000153312 773__ $$0PERI:(DE-600)1465428-3$$a10.1016/j.amc.2014.02.051$$gVol. 235, p. 454 - 468$$p454 - 468$$tApplied mathematics and computation$$v235$$x0096-3003$$y2014
000153312 8564_ $$uhttps://juser.fz-juelich.de/record/153312/files/FZJ-2014-02953.pdf$$yRestricted
000153312 909CO $$ooai:juser.fz-juelich.de:153312$$pVDB
000153312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153312 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000153312 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000153312 9141_ $$y2014
000153312 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000153312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153312 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153312 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153312 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153312 920__ $$lyes
000153312 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000153312 980__ $$ajournal
000153312 980__ $$aVDB
000153312 980__ $$aI:(DE-Juel1)JSC-20090406
000153312 980__ $$aUNRESTRICTED