001     153312
005     20221109161708.0
024 7 _ |a 10.1016/j.amc.2014.02.051
|2 doi
024 7 _ |a 0096-3003
|2 ISSN
024 7 _ |a 1873-5649
|2 ISSN
024 7 _ |a WOS:000335898500047
|2 WOS
037 _ _ |a FZJ-2014-02953
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Towards an efficient use of the BLAS library for multilinear tensor contractions
260 _ _ |a New York, NY
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1398777511_20147
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Mathematical operators whose transformation rules constitute the building blocks of a multi-linear algebra are widely used in physics and engineering applications where they are very often represented as tensors. In the last century, thanks to the advances in tensor calculus, it was possible to uncover new research fields and make remarkable progress in the existing ones, from electromagnetism to the dynamics of fluids and from the mechanics of rigid bodies to quantum mechanics of many atoms. By now, the formal mathematical and geometrical properties of tensors are well defined and understood; conversely, in the context of scientific and high-performance computing, many tensor-related problems are still open. In this paper, we address the problem of efficiently computing contractions among two tensors of arbitrary dimension by using kernels from the highly optimized BLAS library. In particular, we establish precise conditions to determine if and when GEMM, the kernel for matrix products, can be used. Such conditions take into consideration both the nature of the operation and the storage scheme of the tensors, and induce a classification of the contractions into three groups. For each group, we provide a recipe to guide the users towards the most effective use of BLAS.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Fabregat-Traver, Diego
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Quintana-Ortí, Gregorio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bientinesi, Paolo
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.amc.2014.02.051
|g Vol. 235, p. 454 - 468
|0 PERI:(DE-600)1465428-3
|p 454 - 468
|t Applied mathematics and computation
|v 235
|y 2014
|x 0096-3003
856 4 _ |u https://juser.fz-juelich.de/record/153312/files/FZJ-2014-02953.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153312
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144723
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21