001     153314
005     20240625085719.0
024 7 _ |a arXiv:1404.4161
|2 arXiv
024 7 _ |a 2128/6732
|2 Handle
024 7 _ |a altmetric:2285601
|2 altmetric
037 _ _ |a FZJ-2014-02955
100 1 _ |a Berljafa, Mario
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems
260 _ _ |c 2014
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 153314
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a Output Types/Working Paper
|2 DataCite
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
500 _ _ |a 20 Pages, 6 figures. Invited submission to special issue of Concurrency and Computation: Practice and Experience
520 _ _ |a In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, some eigenproblem sequences show a connection between the solutions of adjacent eigenproblems. Whenever is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be a correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a novel approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver, is optimized by minimizing the number of matvec multiplications and parallelized using the Elemental library framework. Numerical results shows that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 1
|u fzj
700 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 2
|e Corresponding Author
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/153314/files/FZJ-2014-02955.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/153314/files/FZJ-2014-02955.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/153314/files/FZJ-2014-02955.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/153314/files/FZJ-2014-02955.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:153314
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144723
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a VDB
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21