000153315 001__ 153315
000153315 005__ 20221109161709.0
000153315 037__ $$aFZJ-2014-02956
000153315 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding Author$$ufzj
000153315 1112_ $$a13th Copper Mountain Conference on Iterative Methods$$cCopper Mountain$$d2014-04-06 - 2014-04-11$$wUnited States
000153315 245__ $$aAn Optimized and Scalable Iterative Eigensolver for Sequences of Dense Eigenvalue Problems
000153315 260__ $$c2014
000153315 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1398777648_20151$$xAfter Call
000153315 3367_ $$033$$2EndNote$$aConference Paper
000153315 3367_ $$2DataCite$$aOther
000153315 3367_ $$2ORCID$$aLECTURE_SPEECH
000153315 3367_ $$2DRIVER$$aconferenceObject
000153315 3367_ $$2BibTeX$$aINPROCEEDINGS
000153315 520__ $$aSequences of eigenvalue problems consistently appear in a large class of applications based on the iterative solution of a non-linear eigenvalue problem. A typical example is given by the chemistry and materials science ab initio simulations relying on computational methods developed within the framework of Density Functional Theory (DFT). DFT provides the means to solve a high-dimensional quantum mechanical problem by representing it as a non-linear generalized eigenvalue problem which is solved self-consistently through a series of successive outer-iteration cycles. As a consequence each self-consistent simulation is made of several sequences of generalized eigenproblems P : Ax =
000153315 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000153315 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000153315 7001_ $$0P:(DE-HGF)0$$aBerljafa, Mario$$b1
000153315 773__ $$y2014
000153315 909CO $$ooai:juser.fz-juelich.de:153315$$pVDB
000153315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153315 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000153315 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000153315 9141_ $$y2014
000153315 920__ $$lyes
000153315 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000153315 980__ $$aconf
000153315 980__ $$aVDB
000153315 980__ $$aI:(DE-Juel1)JSC-20090406
000153315 980__ $$aUNRESTRICTED