Home > Publications database > An Optimized and Scalable Iterative Eigensolver for Sequences of Dense Eigenvalue Problems > print |
001 | 153315 | ||
005 | 20221109161709.0 | ||
037 | _ | _ | |a FZJ-2014-02956 |
100 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a 13th Copper Mountain Conference on Iterative Methods |c Copper Mountain |d 2014-04-06 - 2014-04-11 |w United States |
245 | _ | _ | |a An Optimized and Scalable Iterative Eigensolver for Sequences of Dense Eigenvalue Problems |
260 | _ | _ | |c 2014 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1398777648_20151 |2 PUB:(DE-HGF) |x After Call |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a Sequences of eigenvalue problems consistently appear in a large class of applications based on the iterative solution of a non-linear eigenvalue problem. A typical example is given by the chemistry and materials science ab initio simulations relying on computational methods developed within the framework of Density Functional Theory (DFT). DFT provides the means to solve a high-dimensional quantum mechanical problem by representing it as a non-linear generalized eigenvalue problem which is solved self-consistently through a series of successive outer-iteration cycles. As a consequence each self-consistent simulation is made of several sequences of generalized eigenproblems P : Ax = |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |f POF II |x 0 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
700 | 1 | _ | |a Berljafa, Mario |0 P:(DE-HGF)0 |b 1 |
773 | _ | _ | |y 2014 |
909 | C | O | |o oai:juser.fz-juelich.de:153315 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144723 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|