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1 Introduction

Every Density Functional Theory (DFT) method is grounded on a variational principle directly
inspired by the fundamental theorem of Kohn and Hohenberg [1], and its practical realiza-
tion [2]. Central to DFT is the solution of a large number of coupled one-particle Schrodinger-
like equations known as Kohn-Sham (KS)
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Due to the dependence of the effective potential Ve on the charge density n(r), in itself a
function of the orbital wave functions ¢;(r), the KS equations are non-linear and are generally
solved by a sequence of self-consistent field (SCF) cycles.

The KS equations need to be “discretized” in order to be solved numerically. Intended in its
broadest numerical sense, the discretization translates the KS equations in a non-linear eigen-
value problem. Eigenproblems generated by distinct discretization schemes have numerical
properties that are often substantially different; for sake of simplicity we can group most of the
schemes in three classes. The first and the second classes expand each of the one-particle orbital
wave functions ¢;(r) appearing in the KS equations on a specific set of basis functions
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where G and h represent cumulative general sets of indices.

The first class makes use of simple plane waves g (k,r) ~ ¢/®*&)T with G and k (here the
more commonly used k replaced h index) being vectors in momentum space. This basis set is
very simple to handle in Fourier space where the kinetic energy operator %Vz is diagonal. On
the contrary, the potential term V.g[n(r)] gives rise to a large number of off-diagonal terms.
Moreover, when close to the origin of the atomic Coulomb potential, plane waves can oscil-
late quite wildly giving rise to computational difficulties. For the latter reason plane waves are
usually utilized in combination with pseudo-potentials where the singular part of the Coulomb
term is replaced with a softer function emulating the screening effects of the core electrons. The
resulting pseudo-potential contains both local and non-local terms inducing dense eigenprob-
lems.

The second class resorts to localized functions ¢ (h,r) ~ R(r,)Y;,(f,) which combine ra-
dial functions around an atom with spherical harmonics. One popular example are the Gaussian
type orbitals (GTO)[3, 4]. In this basis set the radial functions are equal to R,(r,) = rﬁe*‘"?’ﬂ,
where G = (a, p) is indexing the atom-localized primitive Gaussians, h parametrizes quantum
numbers ¢ and m, and ¢ ; include the contraction coefficients and normalization constants.
The GTOs set is particularly convenient since it capitalizes on the fact that integrals of multiple
products of Gaussians can be easily reduced, in a chain of simplifications, to products of sin-
gle Gaussian integrals. On the opposite many functions are needed to represent faithfully each
electronic orbital, ending in an expensive bookkeeping process. The net result is that methods
based on GTOs, as well as other kind of localized orbitals, are usually quite accurate but require
a big deal of optimization to ensure the basis set is complete.

A special place is occupied by methods based on Linearized Augmented Plane Waves (LAPW) [5,
6], where a mix of radial functions and plane waves are used. The main advantage of these
methods reside in the ability of employing the full potential without the need of distinguishing
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between core and valence electrons. For this reason this basis set is usually considered quite
accurate — even if expensive — for the simulation of transition metals. Since they give rise to
dense problems, for the purpose of our classification, we just include LAPW-based methods in
the first class.

Methods in the third class do not use an explicit basis set but discretize the KS equations using
functions centered on a uniform mesh in real space. The easiest real-space methods use high-
order finite differences [7] but there are also implementation using finite elements or wavelets [8,
9]. In the latter case, it is possible to have an adaptive mesh closer to the nucleus using the
scaling properties of wavelets. These methods use functions that are localized, a technique
which allows the development of order n methods. In this formalism the potential entries in
the Hamiltonian matrix decay quite radiply away from the main diagonal while the size of the
matrix is proportional with the total number of grid points leading to quite large eigenproblems.
Eigenvalue problems emerging from the first two discretization classes consist of dense matri-
ces of small-to-moderate size while, within real space methods, one ends up with very large
and sparse matrices. While for most DFT methods only a fraction of the eigenspectrum is
required, the magnitude of such fraction can vary wildly from method to method (even within
the same class). In addition, depending on the choice of basis set, the eigenproblems could be
either standard or generalized. In the latter case the numerical properties of the overlap matrix
strongly depend on the over-completeness of the basis set. In some cases this amounts to deal
with eigenproblems with large condition number.

Due to the dramatically different set of properties of the eigenproblems, each DFT method uses
a distinct strategy in solving for the required eigenpairs. For instance it is quite common that
methods ending up with dense problems and a fraction of the eigenspectrum larger than 1% use
direct eigensolvers. On the opposite many real space methods end up with very sparse and quite
large matrices which are not even generated explicitly. Consequently these methods make use
of iterative eigensolver based on Krylov- or Davidson-like subspace constructions. From the
point of view of software packages for distributed memory architectures, the choice between
direct or iterative eigensolvers leads to the use of traditional parallel libraries like, respectively,
ScaLAPACK [10] or PARPACK [11]. Not satisfied with traditional libraries, some of the newer
implementations ended up developing their own tailored eigensolver (e.g. [12, 13]).

In the following section we will address both direct and iterative eigensolvers, their proper-
ties, general parallel implementation strategies as well as some tailored algorithms. Due to the
vastness of the subject we will not be exhaustive but will use specific algorithmic examples to
illustrate the differences in their computational approach. The careful reader can expect to gain
some general insight on which algorithm is best suited to which DFT implementation.

2 Definitions and tools

Let us first introduce some definitions and terminology which are common among specialists
and will be used in the rest of the chapter. We define three distinct type of eigenproblems. They
are all identified by the equation

Axr = \Bx (2)

where A, B € C™ ™ are given matrices’ and one seeks the unknown scalars A € R and
the associated vectors x € C". The latter are referred to as, respectively, eigenvalues and

%In this chapter we always use the letter n to indicate the size of the matrices
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eigenvectors and are usually displayed as an eigenpair (\, x). It is also common practice to
designate the pair (A, B) as an eigenpencil.
In the most general case both A, B are Hermitian symmetric (AT = A, BT = B) and B is
positive or negative definite’. In this case we will refer to Eq. (2) as the generalized Hermitian
eigenvalue problem, GHEVP in brief . If B = I then Eq. (2) reduces to the standard Hermitian
eigenvalue problem (HEVP) Ax = Az. In the particular case where A is also tridiagonal
(a;; = 0 j > i+ 1) the eigenproblem is identified as symmetric tridiagonal eigenvalue problem
(STEVP). In the latter case all non-zero entries of the matrix A are real-valued.
It is important that B is a definite matrix for the GHEVP to be well-posed. As we already
mentioned in the Introduction a measure of such property is the condition number. This number
is defined as

1Bl maxi(o) _ Puax(B)]
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It can be expressed in relation to the singular value decomposition of B = WXV where W, V'
are two unitary matrices and ¥ = diag(o; ...0,) is a diagonal matrix holding the singular
values of B. In the case of GHEVP such values corresponds just to the absolute value of the
largest and smallest eigenvalues of B. Consequently a large condition number implies that B
has one or more eigenvalues very close to zero. When this happens some of the eigenvectors
of the GHEVP are close to linearly dependent and B can be hardly inverted or factorized.
Consequently it becomes very difficult to solve the eigenproblem.

Metrics and performance — The general concept of performance can be associated with
several metrics. One could consider the total CPU time to completion as the measure of the per-
formance of an algorithm implementing an algebraic operation. In many cases this is considered
an important performance metric to compare two algorithmic variants of the same operation
tested in exactly the same condition.

Alternatively one could instead decide that the best algorithm is the one performing the least
number of elementary operations. One refers to the number of elementary operations of a
algebraic transformation as its complexity. For example the complexity of a real-valued matrix-
vector product is 2n2 —n (n multiplications and n— 1 additions per vector entry). It is customary
to consider only the leading term in n contributing to the complexity. For the matrix-vector
product the complexity would then be indicated as O(n?). The complexity of a matrix operation
is directly correlated with the number of floating point operations (flop) a computer is capable
to handle.

The number of flop is a more fundamental quantity with respect to the complexity of an algo-
rithm and it is at the base of the modern way of judging the efficiency of a numerical com-
putation. This is due to the fact that some elementary operations costs more (in terms of flop
counts) than others. In this chapter, as it is done in current literature, we adopt as definition of
performance the flop count rate which is defined as

. NUMBER OF OPERATIONS
PERFORMANCE (Flops) =
TIME (sec)

31t is common practice in numerical linear algebra to represent the hermitian conjugation with the letter H (or
T in the case of real symmetric matrices). Contrary to this habit we use in this chapter the symbol {, commonly
used among physicists.
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Since it is important to put in perspective the absolute performance with the computing archi-
tecture used, we also introduce the theoretical peak performance of a machine defined as

THEORETICAL ) # OF ELEM. OPERATIONS
PEAK PERFORMANCE = (FREQ.) - (# OF CORES) - CYCLE .

With this definition in hand a better measure and a useful tool is the efficiency 7 of a routine,
defined as its performance over the theoretical peak performance. For example one may choose
an expensive (in terms of flop counts) but efficient algorithmic variant respect to a cheaper but
less efficient one. If the efficiency of the former can compensate for the higher complexity, the
first routine will be faster in terms of CPU time. Clearly this is not the only consideration that
should guide the final user in choosing an algorithm.
Another important metric to consider is the amount of memory necessary to perform a specific
computation. The memory requirements of an algorithm — also known as workspace — is the
amount of main cache memory which is needed to complete the computations of a certain al-
gorithm. For example one may want to choose a more “green” computational approach and
minimize the movement of data between memory and processors* at the cost of some perfor-
mance. In fact memory has became an expensive commodity both in terms of memory size
available per core and consumption of energy. Moreover some algorithms may require a large
chunk of cache memory reserved for workspace: if a specific architecture have limited memory
per core such algorithms may be bound by the size of the input data they can handle.
Last but not the list we want to mention accuracy among the possible metrics which are used
to analyze the performance of an algorithm implementation. Some algorithms may, in fact,
compromise on accuracy in order to improve the performance. Moreover some algorithms are
intrinsically more stable and accurate than others; a property that can play an important role in
choosing the correct algorithm for a specific application. When dealing with eigensolvers, ac-
curacy of the results is measured by the value of the residual norm and numerical orthogonality
defined, for the HEVP, as
T
r(\ z) = maxw : O(z) = maxw.
i [ Allne i# e
Here ¢ indicates the relative machine precision. The above definition can be generalized in an
obvious manner to all the other eigenproblems.

Parallelism and scalability — When a program is run on more than one processor, the met-
rics above are not enough to describe the “quality” of an algorithm and its implementation in a
routine. What is lacking are tools addressing the ability of the algorithm to run efficiently in a
parallel fashion. The speed-up of a routine provides a first tool in this direction. Speed-up can
be defined in several ways and we refer to the works of Amdahl and Gustavsson for a theoretical
oriented discussion [14, 15]. For our practical purposes we define below the speed-up for strong
scalability and weak scalability

bres () SPEED-UP,00 = G, = L (3)

t(n) tp(a(n))’

In the above equations, ¢,.;(n) and ¢,(n) indicate the execution time measured in seconds for
a reference hardware (e.g. one core) and p processors respectively. Strong scalability measures

SPEED-UPgtrong = Cs =

“Data movement is by far the most energy expensive process in a computation
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the performance of an algorithm when the number of processors is increased keeping fixed the
size of the data (so the flop count). A perfectly scalable algorithm then should have its execution
halved each time the number of processors in doubled.

Almost every routine contains portions that are intrinsically serial and consequently will never
scale. For this reason a better measure of the effective scalability of an algorithm is its ability to
process larger sets of data (in our case eigenproblems of increasing size) as more processors are
available. Weak scalability parametrizes this property by showing the speed-up an algorithm
achieves when increasing the size of the system and proportionally augmenting the number of
processors. What is kept constant is the flop count per processor. As a consequence the constant
f3 is a function of «. For example if the complexity of an algorithm is O(n?) every time n is
doubled the number of processor has to be increased by a factor of 3 = 23.

Similarly to the performance efficiency 7, we can introduce the parallel efficiency for both
strong and weak scalability

. tref * Dref - tref *Pref - aref(”)

g = ———— ; Cw
tp- D ty-p - ap(n)

As for ) these definitions help normalizing the scalability of the routine under scrutiny. In other
words perfect scalability corresponds to an horizontal line in correspondence of the dimension-
less value 1.

Two important concepts for codes which run on parallel architectures are the algorithmic block
sizes and the distribution block sizes. In the first case one refers to the sizes m; X n, of the
blocks A, a matrix A of arbitrary data type is partitioned in

AO,O . AO,Nfl

Apv-1o oo Apy—in—t

with the exception of boundaries blocks which can be smaller. Similarly the total number of p
processes involved in the computation are logically viewed as a two-dimensional cartesian grid
having distribution block sizes r and ¢ with p = r x c. Each block A, is is distributed over the
grid in such a way that the process (s, ) owns, in a contiguous manner, the blocks

A%5 A%5+c
A= A'y+7',§ A7+r,6+c e ],

where v = (s +0,) mod rand 0 = (t+ 0.) mod ¢, and o, and o, are arbitrarily chosen
alignment parameters. We will see in later sections how both these concepts are crucial for
high-performance computing.

3 Direct eigensolvers

Eigensolvers are categorized by the choice of approach that goes from the input matrices A and
B, defining the eigenproblem, to the eigenpairs (A, z) characterizing its solution. For direct
eigensolvers this path goes through the direct diagonalization of the eigenproblem matrices.
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In other words, as part of the solution process, each matrix defining the eigenproblem is al-
gebraically manipulated so as to bring it to diagonal form. In such form its diagonal elements
correspond to the eigenvalues of the problem whose eigevectors can be subsequently computed.
The diagonalization process is usually carried on with a series of transformations which main-
tain the symmetry properties of the matrix and, most importantly, its spectrum. In the case
of Hermitian eigenvalue problems this target is achieved with a series of similarity transfor-
mations which generically modify the values of every matrix entry. In particular if the matrix
A, defining the problem Ax = Az, has a substantial number of zero entries, the transformed
matrix A = SAST is usually densely populated. Consequently the diagonalization process is
convenient for eigenproblems with matrices that are already dense® while it is disadvantageous
for sparse matrices. For the latter a method preserving the sparsity structure, and so limiting the
total number of floating point operations to solution, is preferred.

Since direct eigensolvers act on all the entries of the eigenproblem matrices, the number of
elementary operations, which are performed during the diagonalization, is directly proportional
to the size n of the problem. We will see in the next sections that complexity, performance and
memory workspace constraints are the most important parameters guiding the computational
scientist in selecting the appropriate algorithm for its needs.

3.1 The stages of a direct eigensolver and their algorithmic variants

In Sec. 2 we have defined three distinct type of eigenproblems based on the properties of the
matrices associated with them. These eigenproblems can also be seen as a chain of nested
problems — GHEVP — HEVP — STEVP — where each type is connected with the previous
one by a non-singular linear transformation which preserve the spectrum. Such linear transfor-
mation can be seen as the action of a pair of invertible matrices K and M on the eigenpencil
matrices (A, B) — (KAM, KBM). In order to preserve the symmetry of the eigenpencil the
transformation K X M needs to satisfy the additional requirement M = KT which restrict us to
similarity transformations.

In practice the path that goes from a GHEVP to the computation of its complete (or partial) set
of eigenpairs can be schematically divided in six stages. Along the road we will recover the
HEVP and the STEVP and their solutions, so that there is no need to describe these other two
type of problems and their path to solution. Since we are dealing with direct solvers in each
stage we will operate just on the input matrices (A, B) defining the GHEVP.

(i) This stage consists in factoring the B matrix in its Cholesky components B = LLT,
where L is a lower triangular matrix. This factorization is unique and possible only if the
matrix B is positive definite. A measure of positive-definiteness is given by the condition
number (B). If this has a very large value it may signal that \,;,(B) ~ 0 making really
hard to numerically compute the factorization. In some DFT methods this condition has
to be verified in advance before attempting the factorization. This stage is referred to as
Cholesky decomposition.

(i1) In the second stage the matrix L is used to perform the first linear transformation bringing
B to diagonal form B — L *LLT(L")"' = [ and A — L7 A(L")~! = C. Consequently
the eigenpencil is now reduced to (C, I) corresponding to the standard eigenvalue prob-
lem Cy = Ay. While the eigenvalues are preserved by this transformation, the same

>The term dense is commonly used to address matrices having a number of non-zero entries greater than few
percentage points.
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cannot be said by the eigenvectors 1, which are related to the original one by y = Lfx
and will motivated the last stage. The second stage is known as reduction to standard
form.

(iii)) Evidently if one has to solve for just an HEVP the first two stages are redundant and
one can start directly from this stage. At this point one builds a unitary transformation,
parametrized by (), which acts exclusively (the action on [ is trivial) on C' — QCQT = T
where 7' is a real-valued symmetric tridiagonal matrix. The eigenproblem has now been
reduced to 7'z = Az. Like in the previous stage the spectrum is preserved while the
eigenvectors go through another transformation z = Qy. We will see later that there are
several methods for building the unitary matrix (). This stage goes under the name of
reduction to tridiagonal form and it is usually the most expensive among all stages.

(iv) This stage is the core of the chain of transformations. While all the stages above are not
data dependent, the solution of the STEVP substantially depends on the distribution of the
eigenvalues and it is particularly sensitive to their clustering®. Several are the algorithmic
choices for this stage. In this chapter we will consider the four most well-known: QR,
Bisection & Inverse Iteration (BXINV), Divide & Conquer (D&C), and Multiple Rela-
tively Robust Representations (MRRR). Each one relies on a different strategy so much
so that the entire six stages eigensolver inherits its name by the tridiagonal solver used in
stage (iv). While this could be common practice it is important to understand that there
are also algorithmic variants for the other stages. Consequently several combinations of
them are not only possible but quite different. Whatever is the tridiagonal solver of choice
the output of this stage are the pairs (), z). For this reason stage (iv) is know as solution
of the tridiagonal eigenproblem. It should be noted in passing that the STEVP also ap-
pear as a byproduct of some iterative eigensolvers, most notably the Lanczos method (see
Sec. 4.1).

(v) Once we have the pairs (), z), it is just a question of tracing back the eigenvectors
of STEVP to the eigenvectors of HEVP y = )z with the first of the so called back-
transformation. If one was bound to solve just a standard eigenvalue problem, this would
be the last stage of the chain.

(vi) Similarly to stage (v), this last stage is meant to compute the eigenvectors of the GHEVP
by the second back-transformation x = (L") "'y leading to the desired output (A, z).

Despite the level of complexity of the operations in each stage appears rather low, there are
several algorithmic variants for each stage. For example the Cholesky decomposition could
be realized in three main variants called respectively right-looking, left-looking and bordered
algorithms. Each of these algorithms have distinct performance and memory signatures. Since
we cannot cover the fine algorithmic details of all stages we will list, in the following, the most
important algorithmic variants of only stages (ii1) and (iv). For more details on the algorithmic
choices for the rest of the stages we refer to the standard book by Golub and Van Loan [16].

Reduction to tridiagonal form — In general the unitary matrix () computed at this stage is
the composition of a series of projection operators, each one a unitary matrix in itself. The scope
of the projection is to eliminate all the entries of C' below and above the first lower and upper

A cluster is loosely defined as a set of adjacent eigenvalues densely concentrated around one value with a
relative distance substantially smaller than the other neighboring eigenvalues.
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sub-diagonals respectively. The two most well-known methods are Givens and Householder
transformations.

In the Givens method the matrix () is the composition of a series of elementary rotation ma-
trices (&, having the only non-zero entries ¢g,, = g,, = cos(¢); ¢; = 1 for i # p,q,
and ¢, = — gy = psin(¢) with p € C, ¢ € R. By construction GG, is unitary and its
action OY = G, C G, can be chosen so as to zero out elements of C' with a specific index r,
cé}«) = c%) — 0 (the subscript (*) indicates how many elementary transformations were operated
on (). For example one can zero out all elements ¢, , V ¢ with a sequence of transformations
(p,q) = (2,3),(2,4),...(2,n). The resulting matrix C"~? = Gy, ...Gy3 C Gly... G} has
all elements of the first row and column equal to zero apart from cgﬁ_?), 0572_2), cgffz). Pro-
ceeding in the same way one can eliminate all other entries until all is left is just a tridiagonal
matrix. Each Givens transformation C*) — C*+1) requires 4(n — r) multiplications and for
each index r there are (n — r) of them. Summing over all values of » = 1,...,n —2 makes the
complexity of the entire reduction to tridiagonal form ) 4(n—r)?* ~ %n‘”’. This method is par-
ticularly suitable for dense matrices which have some definite structure for the non-zero entries:
by avoiding to act on the null elements the Givens method can avoid redundant computations.

The more commonly used Householder method builds () out of elementary matrices
G,=1-— BukuL

which are both hermitian and unitary. The vector u; and constant 5 are chosen in such way to
zero out all the entries of the k column of the matrix G;,C'*) with row indices bigger than k + 1.
By acting on the left with the inverse of GG, (which is the same as the (G;) one eliminates also
all entries of the k£ row with column index bigger than k£ + 1. The result is similar to the chain
of Givens rotations described above apart from the fact that an Householder transformation
achieves this result in a more economical way. In fact the matrix Gy, is never used explicitly
and only rank two updates are used instead (see Golub Van Loan for details). Because of this
property each elementary transformation C*) — C*+1) = G, C*)G,, requires only 2(n — k)?
operations for a total of >_, 2(n — r)? ~ Zn?

A third alternative for the reduction to tridiagonal form was developed relatively recently by
Bischof et Al. [17] and goes by the name of two-step successive band reduction (SBR). The
basic strategy is to first reduce the dense matrix of the HEVP to a banded form leveraging level
3 BLAS operations (see Sec. 3.2 for a definition of BLAS) and only subsequently reduce the
banded matrix to tridiagonal form. Since only the second step uses less performant level 2
and 1 BLAS routines, SBR shows better performance with respect to the classic Householder
method. On the downside SBR needs a total of §n3 operations for the reduction and 2n? for
the accumulation of the matrix () on the fly. This implies that SBR is a very convenient method
when one is interested in only the eigenvalues, since they don’t need the accumulation of the
similarity matrix (), while it may be penalizing if also the eigenvectors are required.

Tridiagonal eigensolver — Four are the main algorithms that are used to solve for the tridi-
agonal problem. They are distinguished by the solving strategy, the memory requirements,
complexity and the ability to solve for just a subset of the spectrum. In the following we pro-
vide a short description and indicate which are the most suitable for DFT computations.

QR uses a series of similarity transformations, preserving the tridiagonal structure of 7', which
turn progressively off the sub-diagonal elements. The algorithm achieves this target by a so
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called bulge-chasing procedure which includes implicit shifts and deflation techniques. The to-
tal complexity of the algorithm is O(sn?), where s indicates the median number of bulge chases
per eigenvalue. The QR algorithm cannot be used to solve for subset of the eigenspectrum and
so it is not particularly suitable for DFT computations.

BXINYV is the first of the two algorithms which is capable of solving for a subset of the eigen-
pairs. The algorithm uses Sturm sequences (bisection algorithm) with a total of O(kn) oper-
ations for k eigenvalues. If such eigenvalues are well separated then BXINV requires another
O(kn) to compute the relative eigenvectors (inverse iteration method). In the case the eigenval-
ues are grouped in tight clusters the complexity can grow up to O(n?). The grow in complexity
is motivated by the need of re-orthogonalize eigenvectors since numerical orthogonality is not
automatically guaranteed for clustered eigenvalues. This algorithm is probably the one cur-
rently most used for DFT computations involving dense eigenproblems. As we will see later
BXINYV is by far outperformed by its close cousin MRRR which should be preferred to it.
D&C strategy is rather well described by its name. This algorithm decomposes 7' in a hierar-
chical tree of smaller submatrices and rank-one updates. At the bottom of the tree each child
submatrix is solved using a secular equation and the process is repeated going from child to
father until the tree is complete. D&C cannot compute subset of the eigenspectrum and its
complexity is O(n?). The complexity can often be reduced substantially by a deflation process
when certain entries in the eigenvectors of the submatrices are small enough. Despite being
not optimal for DFT computations, D&C can be quite performant so as to be used in DFT
computations provided one discards, in the end, the part of the spectrum not required.

MRRR is the second of the algorithms capable of computing for a subset of the spectrum. This
algorithm is a sophisticated variation of BXINV which avoids altogether the re-orthogonalization
of the eigenvectors. Consequently MRRR complexity is approximately reduced to O(n?). In
practice the overall complexity depends on the clustering of the eigenvalues. Due to its low
complexity and the ability to solve for a portion of the eigenspectrum without the need for
costly orthogonalizations, this is the most indicated algorithm for DFT computations and should
almost always be preferred to BXINV.

3.2 Libraries, performance and parallelism

Since numerical linear algebra deals with vectors and matrices the most common and important
operations are included in specialized and optimized libraries. Among the most well-known are
the Basic Linear Algebra Sub-routines (BLAS) and the Linear Algebra PACKage (LAPACK).
One of the most important practice that can improve the performance of an algorithm-derived
routine is the correct use of the kernels already present in these standard libraries.

BLAS and LAPACK — The main motivations behind the Basic Linear Algebra Subroutines
were modularity, efficiency, and portability through standardization [18]. The BLAS library
consists of three levels, corresponding to routines for vector-vector, matrix-vector and matrix-
matrix operations [19, 20]. From a mathematical perspective, it might appear that this struc-
ture introduces unnecessary duplication: For instance, a matrix-matrix multiplication (a level 3
routine) can be expressed in terms of matrix-vector products (level 2), which in turn can be ex-
pressed in terms of inner products (level 1). The layered structure is motivated by the increased
efficiency of level 2 and 3 routines on architectures with a hierarchical memory. In fact BLAS
1, 2, and 3 are capable respectively of 1/2, 2 and n/2 operation counts per number of memory
accesses, giving the higher-level routines a better opportunity to amortize the costly memory
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accesses with calculations. With respect to the full potential of a processor, the efficiency of
BLAS 1, 2, and 3 routines is roughly 5%, 20% and 90+%, respectively. Moreover, the scalabil-
ity of BLAS 1 and 2 kernels is rather limited, while that of BLAS 3 is typically close to perfect.
In practice, this means that level 3 routines attain the best performance and should be preferred
whenever possible. In other words BLAS succeeded in providing a portability layer between
the computing architecture and both numerical libraries and simulation codes.

In addition to the reference library,” nowadays many implementations of BLAS exist, including
hand-tuned [21, 22], automatically-tuned [23], and versions developed by processors manu-
facturers (Intel-MKL, IBM-ESSL, AMD-CML). More importantly BLAS kernels are heavily
used in most of standard libraries (e.g. LAPACK, ScaLAPACK, etc.) implementing the linear
algebra operations we have described in the six stages of the GHEVP.

The LAPACK library in its modern form already includes BLAS kernels and add, on top of that,
many other routines covering almost the entire spectrum of standard linear algebra operations.
For example we can find in it routines to solve triangular linear systems as well as Cholesky
decomposition used respectively in stage (vi) and stage (i) of the GHEVP. This library was
built in the ’90s on top of other library packages developed 20 years earlier like EISPACK.
In LAPACK one important section is devoted to the solution of the Symmetric Eigenvalue
Problem (which includes also the complex case). Routines for the solution of all three type of
eigenproblems are included allowing for several choices depending, for example, on the number
of eigenpairs required as well as the storing of the matrices in memory.

Tridiagonal eigensolvers on a single core —  We now illustrate how some of the tools of
Section 2 can be used to analyze the performance of the tridiagonal eigensolvers described in
the previous subsection. Results illustrated below were conducted on a single processor using
the LAPACK eigensolver implementations. Since we deal with a specific library, we refer to
each eigensolver interchangeably by its acronym or the name of its relative routine as outlined
in Table 1.

Table 1: LAPACK tridiagonal eigensolvers

Algorithm | Routine Workspace Eigenpairs subsets
QR STEV Real: 2n — 2 No
BXINV STEVX Real: 8n Yes
D&C STEVD | Real: 1+ 4n + n? No
MRRR STEVR Real: 18n Yes

Experimental tests using both artificial and practical matrices show without any doubt that
STEVR and STEVD are typically much faster than STEV and STEVX [24]. On average MRRR is
the fastest among the four algorithms with some exceptions in special cases. These conclusions
are supported by an experimental measure of the “effective” complexity of each algorithm. By
comparing the CPU time to completion and counting the total number of operations performed,
it is possible to infer an experimental complexity value based on the assumption that the perfor-
mance of each solver does not change with the size of the problem examined.

By testing on a large set of matrices it results that the effective complexity of STEV is O(n*?),
very similar to the one for STEVX. For STEVR the effective complexity is O(n??), a sligtly

7Available at http://www.netlib.org/blas/ .
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higher value than the theoretical one. STEVD instead registers a lower value, O(n*?), respect
to the theoretical one. So from the operation count point of view the higher performance of
MRRR is quite justified.

The results for QR and BXINV are in line with the fact that neither the bulge chasing part of
QR nor the bisection and inverse iteration of BXINV use any routine from the levels 2 or 3 of
BLAS. The interesting piece of data is that, while MRRR execute many less operations than
the other algorithms, it does so at a higher cost. In other words the number of divisions STEVR
performs is always a significant fraction of the total number of operations. Since divisions
cost up to 4 times more than multiplications, the measured performance is lower than expected
resulting in a higher effective complexity. STEVD experiences the opposite outcome due to the
combined effect of using BLAS 3 to update the eigenvector matrix, together with the mechanism
of deflation. If there is a lot of deflation STEVD performs many fewer scalar operations (slow),
while if there is little deflation most of the flops are performed by calls to level 3 BLAS (fast).
Overall STEVD experience a speed-up respect to its theoretical complexity.

The above example illustrate how performance for an algorithm depends on several factors
including complexity, block operations®, efficiency of specialized kernels, etc. To conclude let
me also remind that the performance depends also on the hierarchy of the cache memories of the
computing architecture. For example STEVD may well be the fastest routine for a specific class
of eigenproblems (e.g Wilkinson matrices) but the same routine uses up to O(n?) workspace so
that on some specialized machines such routine may not be used for large problems anymore.
In the latter case the lower workspace (O(n)) favor STEVR the optimal algorithm of choice.

ScaLAPACK, ELPA and Elemental — Where LAPACK is the most well-known library for
dense numerical linear algebra single processor routines’, ScaLAPACK is probably the most
renown library for heterogeneous computing platforms. It is a adaptation of most LAPACK
routines to distributed memory architectures using the Message Passing Interface (MPI) proto-
col. It requires PBLAS, the parallel version of BLAS, which is currently included in the library.
A specific section of this library is devoted to the solution of dense eigenproblems. Scal.A-
PACK was also the first library using block cyclic data distribution for dense matrices together
with block-partitioned algorithms. This was an important design feature introducing a tension
between having block sizes that are large enough for local BLAS efficiency yet small enough to
avoid inefficiency due to load-imbalance. In ScaLAPACK this tension is intrinsically included
in the design by linking the distribution block sizes to the algorithmic block sizes. The library
is written in Fortran and it is structured in low-level modular routines which follow the same
pattern of the LAPACK ones.

As can be seen from table 2 ScaLAPACK includes only one routine for GHEVP which uses
BXINYV for the tridiagonal solver while all four algorithms are represented for the HEVP. This
is actually not a limitation of ScaLAPACK since one can combine routines for the other stages
other than (iv) and build one’s own GHEVP solver. For example it was noted in [25] that
one should always use the PZHENTRD for the reduction to tridiagonal form (for a square grid
of processes) instead of PZHETRD: the former, which is designed for a rectangular grid of
processes, is so much less performant than it is always convenient to use less cores arranged on
a square grid.

The are modern alternatives to ScaLAPACK routines for dense eigensolvers. In particular in re-

8conceptually similar to algorithmic block size used in parallel libraries

9Recently some LAPACK libraries like MKL provide also multi-threaded functionalities
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Table 2: ScaLAPACK eigensolvers routines

Algorithm | Routine (Complex) | Routine (Real) Eigenproblem type
BXINV PZHEGVX PDSYGVX GHEVP

QR PZHEEV PDSYEVX HEVP

BXINV PZHEEV PDSYEV HEVP

D&C PZHEEVD PDSYEVD HEVP

MRRR PZHEEVR PDSYEVR HEVP

D&C - PDSTEVD STEVP

MRRR - PDSTEVR STEVP

BXINV - PDSTEBZ STEVP eigenvalues only
BXINV PZSTEIN PDSTEIN STEVP eigenvectors only

cent years there has been quite a large interest in exploring new framework for parallel libraries
for large dense eigenproblems. Among the several attempts in this direction the two most re-
cent and performant are ELPA and Elemental. While ELPA is a set of routines specifically
designed for eigenvalue problems, Elemental is a new complete framework for dense linear
algebra operations which also include a driver for dense eigenproblems.

ELPA is a set of Fortran subroutines (modules) which can be compiled with an application of
choice or as separate library which can also be linked to from C, or C++ code [26]. ELPA is
based on the ScaLAPACK framework and cannot be used independently from it. From this
point of view the ELPA library builds on top of ScaLAPACK and it is not, strictly speaking, an
alternative to it. As such, necessary prerequisite libraries for ELPA include BLAS, LAPACK,
Basic linear algebra communication subroutines (BLACS), and obviously ScaLAPACK. ELPA
is an MPI only implementation; there are no hybrid parallelization (MPI/OpenMP) available.
Consequently the ELPA library works both on a single-node, shared memory environment, as
well as on large clusters of distributed memory nodes.

The library provides modular routines for two different approaches to solve large eigenvalue
problems: the ELPA 1 STAGE modules, including the routine solve_evp_real , focus on reduc-
ing communication overheads and maximizing cache performance for existing standard ScalLA-
PACK routines (PDSYEVR). ELPA 2 STAGE routines such as solve_evp_real 2stage add extra
steps into the traditional three-step HEVP approach outlined in the previous section. An inter-
mediate banded representation of the matrix is formed during the reduction to tridiagonal form
using a variant of the SBR algorithm. Likewise an intermediate banded form is generated during
the back transformation stage of the calculation. The 2 Stage routines provide the real novelty
of the ELPA library. Both ELPA solvers can be directed to calculate a subset of eigenpairs if
preferred by the user.

Elemental is a modern framework for distributed memory dense linear algebra [27] which is de-
signed to overcome the possible problem deriving from linking the algorithmic block size to the
distribution block sizes. Elemental restricts the algorithmic block sizes to m, = n, = 1. The
core of the library is the two-dimensional cyclic element-wise (“‘elemental” or “torus-wrap”)
matrix distribution. This approach is based on the observation [21] that the optimal algorithmic
block size should be related to the square root of the size of the L2 cache memory. The Elemen-
tal approach for the distribution grid avoid linking the distribution with the algorithmic block
sizes and so eliminates the issue between load balancing and filling the L2 cache. For a given
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number p > 1 of processors there are several possible choices for 7 and ¢ forming different
grid shapes (r,¢) = 7 x c. Since the grid shape can have a significant impact on the overall
performance, careful experiments should be undertaken in order to determine the best choice
of (r,c). Elemental parallel eigensolver is based on a parallelized version of MRRR [28, 25],
namely EleMRRR.

Scalability and efficiency of parallel libraries — Implementing a scalable eigensolver im-
plies that all the stages, even the less expensive ones, should have the same degree of scalability.
We will briefly illustrate how scalability depends on many factors and may vary as a function
of the size of the problem as well as the number of cores utilized. In the following we will
show some example of scalability for ScaLAPACK and Elemental. The numerical results and
the plots are extracted from the paper [25] by generous concession of the authors.
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Fig. 1: Strong scalability for the computation of all eigenpairs with matrices of size 20,000.
Red and green lines corresponds to ScaLAPACK eigensolvers based on the tridiagonal D&C
and MRRR. The blue line corresponds to the parallel MRRR-based eigensolver implemented in
Elemental. (By courtesy of Petschow and Bientinesi)

The strong scaling plots shows that there is not much difference between the three parallel
eigensolvers up to 512 cores. At that point ScaLAPACK solvers performance degrades dra-
matically due to the MPI communication design decision: while the elemental distribution of
Elemental does not force an algorithmic block, ScaLAPACK blocked communication hamper
the scalability of the algorithm implementation over a certain number of cores. This is more
evident by looking at the parallel efficiency which degrades quite dramatically for ScaLAPACK
solvers above 512 cores, where the reference point is chosen to be 64 cores. Observe the perfect
efficiency of PZHEEVD and PZHEEVR for 16 nodes (equivalent to 128 cores) due to the use of
the very efficient ScaLAPACK PZHENTRD routine. The plots for weak scalability shows how
Elemental scales much better for larger size eigenproblems than either ScaLAPACK D&C and
MRRR. This result implies an almost perfect parallel efficiency and, consequently the possibil-
ity to solve increasingly bigger eigenproblems in a still reasonable amount of time.

The superior performance of the Elemental eigensolver (EleMRRR) is due to two main factors:
1) the elemental distribution strategy among processes favor a more fine coarse communication
pattern which is close to optimal and 2) the tridiagonal eigensolver has been parallelized using a
dynamic allocation of the load among all processes. The latter characteristic allows EleMRRR
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Fig. 2: Weak scalability for the computation of all eigenpairs with matrices of increasing size.
Red and green lines corresponds to ScalAPACK eigensolvers based on the tridiagonal D&C
and MRRR. The blue line corresponds to the parallel MRRR-based eigensolver implemented in
Elemental. (By courtesy of Petschow and Bientinesi)

to scale also when using thousands of cores. The same cannot be said for ScaLAPACK D&C
tridiagonal stage: the fraction of time spent on this stage by the eigensolver goes from 4.5% on
64 cores to 41% on 2048 cores determining its drop in performance.

It is important to point out that both ELPA and EleMRRR are quite recent additions and are
still not used by the majority of DFT codes dealing with dense eigenvalue problems. On the
opposite the use of the more established ScaLAPCK is almost ubiquitous. This seem quite
in contradiction with the desire to simulate physical systems with a higher number of atoms,
which in turn needs a more efficient and scalable eigensolver. The main reason behind the lack
of change is to be found in the need of a profound change for the data distribution pattern. From
this point of view ELPA requires much less man-programming hours than Elemental. Despite
this increased handicap, future DFT codes, which want to efficiently run on massive parallel
architectures, will inevitably have to step up and face the initial investment.

4 Iterative eigensolvers

As mentioned at the beginning of section 3, for a sparse eigenproblem it is advisable to use an
eigensolver which preserves the structure of the sparsely populated matrices which define it. It
is important to notice that a matrix is defined as sparse when the number of non-zero entries
(nnz) is less than a few percentage points of n2. This is particularly important because these
matrices are usually stored in memory in sparse format: only non-zero entries and their indices
are specified. Consequently saving in memory only the nnz data frees up quite a bit of memory.
Iterative methods do not attempt to directly diagonalize the matrix but instead strive at deter-
mining the eigenspace (or a subspace of the eigenspace) of the problem. This result is attained
by repeadetly multiplying one (many) trial vector(s) with the matrix defining the HEVP!? and
in some way aligning it to the dominant eigenvector (eigenspace). This idea is at the base of
the so-called power method and provides the basic principle on top of which all other iterative
methods are built.

10The GHEVP is usually treated by reducing it to standard form even if there are several possible alternatives.
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The power method relies on the basic concept that any random vector v can be decomposed as

a linear combination v = ) _; v;x; of the eigenvectors basis set {1, ..., 2, } with [A[ > [Ag] >
|A3] > .... The repeated multiplication of A on v from the left results in
A\
Av = Z Ayirg = oW = Aky = Z )\f”ijj = A\ |z + Z ()\—i> V5T
J J Jj=2

For large enough k the eigenvector with largest eigenvalue dominates over the others and v(*)

k
converge to x; at the rate with which all the coefficients ’i—i’ become negligible.

Since iterative methods are all roughly based on the power method, their effectiveness is grounded
in multiple repetitions of matrix-vector multiplications. As such, iterative methods work on the
vectors and not on the matrix, thus maintaining intact its sparse structure. While preserving the
matrix sparse structure, efficient matrix-vector multiplications cannot rely on BLAS and need
to be optimized for the specific problem or class of problems. This characteristic makes very
difficult to know a priori the complexity of an iterative eigensolver. This is the more so since
one does not know in advance when a trial vector would converge to an eigenvector.

In theory, there is nothing that prevents iterative methods to be used on dense matrices. In fact if
the dense matrix is not too large and the desired fraction of the spectrum is very small (< 1%),
it is common belief that iterative methods could still be competitive, performance-wise, with
direct ones. As long as the number s of matrix-vector multiplications required for convergence
of the residuals is less than the inverse of the fraction of spectrum desired f, the iterative solver
complexity O(s * f *n?) < O(n?). In other words the iterative solver is no more complex than
a direct one. We will see that this fact can be exploited in the case of some tailored eigensolvers,
an example of which is described in Sec. 5.

Another issue to address with iterative solvers is the marked distinction between solving for the
GHEVP and the HEVP. This difference has its source in the lack of a clear path which takes the
GHEVP and transforms it to an HEVP. In general one would like to preserve the structure of the
matrix B and so avoid expensive factorizations which would inevitably lead to a dense factor L
and spoil the sparsity of the problem. Avoiding factorizations depends very much on how well-
conditioned is the B matrix. If the condition number is low one could “invert” 5B and solve for
B~'Ax = Az. On the contrary if x(B) is quite large, factorizations are unavoidable and the first
two stages of the direct method are used to reduce the problem to standard form. In these cases
it is customary to rely on incomplete factorization which limit the density of L and may still
produce good enough solutions. The rest of this section will not enter in the merit of describing
how to solve GHEVP and exclusively deal with solving HEVP with iterative eigensolvers.

The large class of iterative eigensolvers can be divided in 3 major groups. Subspace iteration
based methods, Krylov-based methods, Davidson-based methods.

4.1 Three classes of iterative methods

Subspace iteration methods — Subspace iteration is just a generalization of the power
method. Instead of iterating the multiplication of A with v (v = Av(~V) one can iterate
on a space of dimension larger than one V' € C™**. Iterating on such initial space would, in
general, lead to a dominant k-dimensional subspace U associated with the first k eigenvalues
|Ad1] > -+ > |\g|]- The global convergence ratio now clearly depends on the magnitude of the

>\k:+1

largest among the coefficients required to be negligible ‘T .
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In practice, if one use subspace iteration in its purest form V) = AV (=1 each single vj(.i) €
V(® becomes mostly aligned with the eigenvector corresponding to A\... After a sufficient
number of iterations the subspace could become rank-deficient leading to multiple copies of the
same eigenvectors. In order to avoid this undesirable effect, subspace iteration is usually used
in combination with a shift A — 0. The dominant eigenvector of the shifted matrix would be
the one corresponding to the eigenvalue closer to o. By using a different shift at each iteration
distinct eigenspaces can be enhanced at each iteration

VO =(A—g ) (A= )V

To work properly this method assumes the a priori knowledge of shifts {oy,...,0%} close
enough to the true eigenvalues. Such knowledge is not often available but can be inferred
by evaluating the Ritz values after a certain number of non-shifted iterations.

The procedure described above is equivalent to using for a single iteration a polynomial p(t) =
(t — o) - -+ (t — 01) having zeros close to the & dominant eigenvalues. In addition to generalize
the subspace iteration to polynomials one can orthonormalize the resulting vectors using the
Gram-Schmidt procedure

p(AVED = [p(A) L p(A)l Y] — [l gl?) = QW with (QW)IQW = 1.

The convergence to the solutions of the iterates can be tricky. In general computing the error
(as the distance between successive vectors) may not guarantee that when the error is small we
reached convergence. A better criterion is to check the residuals for the approximated eigenvec-
tors and declare the eigenpairs converged when residuals are below the required tolerance. In
general one measure the rate of convergence of the process by looking at the difference between
the residuals across two iterations. If this difference decrease linearly one refers to it as linear
convergence. It is a known results of numerical linear algebra that subspace iteration can at best
converge linearly.

Krylov subspace methods — Krylov-based methods refer to a specifically constructed se-
quence of subspaces approximating an invariant subspace of the entire spectrum. The relative
space is called Krylov and is indicated by K (A, v). The ingenuity of the Krylov method is
in building a sequence of subspaces of increasing dimensionality (as opposed to the fixed di-
mensionality of subspace iteration). In practice the subspace is characterized directly by an
orthonormal space which is the by-product of the construction.

One start with a normalized vector u = u; = K;(A, ) and compute us as

ughoy = Auy — hiqur 3 Ko(A,u) = span{uy, us}

where h; 1 is chosen so as to make u; orthogonal to us, and hs ; is just a scale factor. The whole
process is then repeated j times to find /C;(A, u) = span{uy,...,u;}. Atthe j + 1 step, one
first checks if Au; € span{us,...,u;}. If this is the case, the coefficent ; ; should be chosen
such that Au; = Zgzl w;h; ;. In this way hj;;; = 0 and u;4; is indeterminate. At this point
the Krylov process terminates and the resulting subspace is invariant.

In general the k-step of the Krylov process can be represented in matricial form as

AU, = UpHp41 .k
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where the matrix Uy, collects all the u vectors, and Hj 1y is a matrix accumulating all A, ;. If
one defines the upper Hessenberg matrix deleting the bottom row of Hy; j then the process is
better described by

AU, = Uy Hy, + uk+1hk+l,k€£-

Whenever hy 1, = 0then A = UHU ~1 which clearly shows that the matrix H corresponds to
the eigenproblem A reduced to the invariant subspace K (A, u). Even when the Krylov process
is only partially completed it produces a quasi-similarity transformation.

Thus even if hj1;; is not equal to zero, the Krylov process leads to a subspace which con-
tains good approximants to the eigenvectors of some of the peripheral eigenvalues of A. This
property constitutes the basis of the the so-called Arnoldi method of implicit restarts. It has
been successfully implemented by Sorensen et Al. in the package ARPACK [11]. The aim of
the Arnoldi procedure is to keep m < k vectors of the Krylov subspace which are rich in the
components of the good approximants to the eigenvectors, discard the rest and start the Krylov
process again from these m vectors. This is achieved through a GR process whose details are
not important for the purpose of this chapter. We remit the reader to the vast literature on the
subject [29].

Algorithm 1 Symmetric Lanczos algorithm with re-orthogonalization
Require: Matrix A of the HEVP and initial vector u
Ensure: NEV wanted eigenpairs (A, x) .

1o uy < u/||ull

2: U1 < [Ul]

3: forj=1,2,3,... = NEV (\,z) do

4: Ujp1 < AU]‘

5: Qj <— Uity

6: Ujp1 < Ujp1 — QU

7: if ; > 1 then

8: Ujpy <= Ujr1 — Bj1uj

o: end if

10: 61:j — U]Tujﬂ

11: Ujp1 — wjp — Ujoyy > RE-ORTHOGONALIZATION
12: Qj < o+ 0;

13: B llujsl]

14: if 3; = 0 then

15: Flag span{uy, ..., u;} is invariant
16: Exit

17: end if

18wy < uj/f;

19: Uj+1 — [U] Uj+1]
20: end for

Since the Krylov process preserves the symmetry of the matrix A, in the case of the Hermitian
(or symmetric) eigenvalue problem the matrix [ is actually tridiagonal. The net result is that
the whole process of building H is actually reduced to a 3-term recurrence relation

Uj+15j+1 = Auj — QUu; — 5;'71%;1

In this case the Krylov-Arnoldi process is called Lanczos process (see Alg. 1)
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The Krylov process is an instance of the the Gram-Schmidt method and as such is vulnerable
to roundoff errors. Over the course of several steps executed in floating point arithmetic, the
orthogonality of the vectors steadily deteriorate. The standard remedy, as suggested by Kahan
in an unpublished work, is to orthogonalize twice. This practice has also been confirmed by
numerical analysis [30]. Thus the safest way to preserve orthogonality is to save all the vectors
and orthogonalize against them.

By re-orthogonalizing, the Lanczos process looks very similar to the Arnoldi, so one may won-
der why bothering with the 3-term recurrence relation. The simple answer is that the Lanczos
process has the advantage of preserving the structure of the matrix H leaving it symmetric like
the original A. Then the restart can be performed through a symmetric QR algorithm which
also keep the structure intact and has a lower complexity than the full GR.

Davidson methods — The original Davidson method was devised by the homonymous au-
thor to compute the lowest energy levels and corresponding wave functions for eigenvalues
problems arising in quantum chemistry. Davidson algorithm builds a subspace of increasing
dimensionality by adding a new vector at each step in a way similar to the Lanczos algorithm.
The main difference lies in the choice of vector: instead of being extracted by Auy_; the addi-
tional vector is obtained with a correction equation for the residual r,_; = (Aug_1 — S\k,luk,l)
sometimes also referred as diagonal preconditioning step.

Several are the variants of the Davidson method, some of which are also implemented in a
block version. All these can be classified in two major groups: Generalized Davidson (GD) and
Jacobi-Davidson (JD) methods. In its original and simplest form the algorithm would look only
for the largest or smallest eigenpair. In Alg. 2 we present a rather simple formulation which
shows the major differences with Lanczos are in lines 5 and 12. The simplest Davidson method

Algorithm 2 Davidson algorithm
Require: Matrix A of the HEVP and initial vector u
Ensure: largest eigenpair (Apax, ) -

10wy < u/||ull

2: U1 < [Ul]

3: forj=1,2,3,... = NEV (\,z) do

4: Hj < U]TAUj > RAYLEIGH-RITZ QUOTIENT
5: Compute largest eigenpair (;, ;) of H,

6: Compute Ritz vector z; < U;y;

7: Compute the residual 7; < (A, — A)z;

8: if r; < TOL then

9: (Amax; ) = (A;,95)
10: Exit

11: end if
12:  Correction equation t,,1 < (A, — D)~ 'r;
13: 51;j — U]J-rthrl
14: tiv1 < tjy1 — Ujor > ORTHOGONALIZATION
150 it/ ltal
16: Uy < [Uj tj4]
17: end for

does not rely on any kind of restart but keeps building a subspace and then constructing the
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Rayleigh-Ritz quotient out of which it extracts an approximant to the largest eigenpair. The
subspace is incremented by solving a “preconditioned” linear system associated with the HEVP
where the known term is the residual of the approximant and D is the main diagonal of A.

Davidson method can be straightforwardly generalized to a block implementation where the
U; is incremented with a block of vectors and a block of eigenpairs is sought after. The block
adaptation is particularly relevant when the resulting code are ported over parallel computing
architectures. What is not obvious is how to generalize the correction equation on line 12.
In general this equation can be written as Cj t;1; = —r; and solved with a low level of
accuracy. The operator Cj; can be as simple as (A — 5\j I) or as complicated as (1 — xjx;r-)(A —

M) (T — x]xj) The latter choice is at the base of the JD method: by solving the correction
equation orthogonally to the Ritz vector x;, JD avoids the well-known effect of stagnation. In
addition to an improved correction equation a preconditioner can be used. In the case of JD
the inverse of such preconditioner needs to be inverted orthogonally to z;. Additionally the
Davidson methods could be restarted for efficient use of the memory and better convergence of
the subspace approximants.

It is worth to mention an algorithm which does not quite fit the above grouping: the Locally Op-
timal Block Preconditioned Conjugate Gradient method (LOBPCG). Similar to a block version
of GD the LOBPCG can deal directly with GHEVP. Developed in 2001 by Knyazev [31, 32],
this algorithm uses a locally optimized version of a three-term recurrence relation for the pre-
conditioned conjugate gradient method. In practice the Rayleigh-Ritz method is used for the
eigenpencil on a trial subspace generated by the current guess for the Ritz vector, the precon-
ditioned residual, and a third Ritz vector built by maximizing the Rayleigh quotient. Knyazev
implemented a block version of the algorithm where the three-term relation is generalized for a
block of vectors. LOBPCG can deal directly with GHEVP only if B is well-conditioned. When
k(B) has a large value the performance of the algorithm deteriorates quite rapidly and reduction
to standard form is more stable [33].

4.2 Libraries

ARPACK and PARPACK — The first and foremost best known library of iterative eigen-
solver is the Arnoldi Restarted Package (ARPACK). This library is based upon an algorith-
mic variant of the Implicit Restarted Arnoldi Method (IRAM) which reduces to the Implicit
Restarted Lanczos Method (IRLM) for Hermitian or symmetric eigenproblems. Both variants
are just instances of the general Implicitly Shifted QR technique applied to the the Krylov-
Arnoldi process. ARPACK is conceived to solve for large scale symmetric, or non-symmetric
eigenvalue problems. The software is designed for sparse and structured matrices such that the
matrix-vector product Au would involve only O(n) operations instead of the standard O(n?).
The collection of subroutines making up the library are written in Fortran77. For many standard
problems, there is no need for an explicit matrix factorization. Only the action of the matrix A
on a vector is required. The software is aimed at computing a small fraction of the total number
of eigenvalues with either largest real part or largest magnitude. Storage requirements are on
the order of n x s with s being the number of required eigenpairs. No extra auxiliary storage
is required. A set of Schur basis vectors for the desired s-dimensional eigenspace is computed
which is numerically orthogonal to working precision. Numerically accurate eigenvectors can
be computed on request.

The PARPACK software package realizes the parallelization of the ARPACK library for dis-
tributed memory architectures. It has been designed so as to provide the user with a Single Pro-
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gram Multiple Data (SPMD) template. The reverse communication interface, which is the most
important design feature of ARPACK, has motivated the parallelization strategy. The interface
enables PARPACK to be internally parallelized by avoiding to impose predetermined parallel
decompositions on A and on the user-provided matrix-vector product. The call to PARPACK
preserve the same structure as ARPACK, the only difference consisting in the inclusion of the
Basic Linear Algebra Communication Subprograms context. The net result is outlined in 3
main steps: 1) replicating H; on every processor, 2) distributing (blocked by rows) U; on a
1-dimensional processor grid, 3) distributing the workspace accordingly. The greater part of the
communication takes place during the Gram-Schmidt orthogonalization and possibly in the user
supplied matrix-vector multiplication. Clearly the intrinsic serial nature of the algorithm does
not lend itself to parallelization on massive number of processors when the parallel efficiency
degrades substantially.

SLEPc — The Scalable Library for Eigenvalue Problem Computations (SLEPc) [34], is a
software library for the solution of large sparse eigenproblems on parallel computing architec-
tures. The majority of SLEPc routines are intended to be used for the solution of both general-
ized and standard eigenvalue problems in their linear or non-linear version. SLEPc provides a
large set of different methods and focus on the choice of the most appropriate one in relation to
the application which generated it. Most of the methods offered by the library are indeed sub-
space methods. The default eigensolver is a slight modification of the classic Krylov process
named Krylov-Schur method [35, 36]. The library also offers routines implementing JD and
Conjugate Gradient methods as well as an interface to several external packages like ARPACK,
BLZPACK, TRLAN, BLOPEX, and PRIMME. The library does not limit itself to the solution
of Hermitian problems but it extends also to non-symmetric and more general complex-valued
eigenproblems. Among its other functionalities, it provides routines for Singular Value Decom-
positions and tools of spectral transformations such as shift and invert, etc..

SLEPc is built on top of the Portable Extensible Toolkit for Scientific Computation (PETSc) [37].
As an extension to PETSc toolkit, SLEPc inherits a variety of tuned data structures, multivector
operations, matrix-vector and preconditioning operators, but it cannot run as stand-alone with
applications that do not use PETSc. This means that PETSc must be previously installed in
order to use SLEPc. This library enforces the same programming paradigm as PETSc making
it quite easy to manipulate for users already acquainted with the use of the latter. Users who
are not familiar with PETSc are invited to first get accustomed to the basic concepts of such
framework before endeavor in the use of SLEPc.

PRIMME and BLOPEX — The PReconditioned Iterative Multi Method Eigensolver

(PRIMME) [38] is a software package for the solution of large, sparse Hermitian and real sym-
metric standard eigenvalue problems. PRIMME constitutes a significant effort towards the real-
ization of a robust and effective code for the solution of large and difficult eigenproblems when
matrix factorization is not a viable option and the user has to rely only on matrix-vector op-
erations and, possibly, a preconditioning operator. PRIMME developers stress that the library
design strategy is to provide a flexible eigensolver with the following salient characteristics: 1)
preconditioned eigen-methods converging near optimally under limited memory, 2) the max-
imum robustness possible without matrix factorization, 3) flexibility in mixing and matching
among most currently known features, 4) efficiency for most architectural layout, and 5) a
friendly user interface that requires no parameter setting from end-users but permits full ex-
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perimentation by experts. The algorithmic framework of PRIMME is built on top of the two
near optimal methods derived from the class of Davidson algorithms: GD+k and JDQMR. It is
remarkable that these two algorithms also provide the structure to show how other algorithms
can be parameterized within this framework.

The Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) [32] is a pack-
age, written in C and MATLAB/OCTAVE, that includes an eigensolver implemented with
the Locally Optimal Block Preconditioned Conjugate Gradient Method. Its prominent char-
acteristics are: 1) a matrix-free iterative method for computing several extreme eigenpairs of
symmetric positive generalized eigenproblems, 2) a user-defined symmetric positive precondi-
tioner, 3) robustness with respect to random initial approximations, variable preconditioners,
and ill-conditioning of the overlap matrix. BLOPEX supports parallel MPI-based computa-
tions. BLOPEX is incorporated in the HYPRE software and is available as an external package
to the PETSc framework.

Anasazi — Anasazi [39] is a well engineered package, with several features that boost ro-
bustness and efficiency. Anasazi provides a generic interface to a collection of algorithms for
solving large-scale eigenvalue problems. The package implements three methods: a version
of the block Krylov-Schur algorithm, a variant of the LOBPCG method with orthogonaliza-
tion to avoid stability issues, and a block GD method for solving standard and generalized real
symmetric and Hermitian eigenvalue problems. All methods are implemented in block vari-
ants in order to increase robustness for obtaining multiple eigenvalues and to take advantage
of the increased data locality in block matrix-vector, pre-conditioning, and BLAS operations.
Even if the total number of matrix-vector multiplications increases in block implementations,
for appropriate block sizes this effect is usually balanced by better cache performance.
Anasazi is an interoperable software since both the matrix and vectors are defined as opaque
objects so that only knowledge of the matrix and vectors via elementary operations is necessary.
As such Anasazi implementations are accomplished via the use of interfaces. Current available
interfaces include Epetra. Consequently any libraries that understand Epetra matrices and vec-
tors may be used in conjunction with Anasazi. One of the goals of Anasazi is to allow the user
the flexibility in specifying the data representation for the matrix and vectors and so leverage
pre-existing software investment. Anasazi is part of the Trilinos framework that includes highly
optimized linear algebra operations.

DFT codes implementations — Many of the algorithms previously illustrated have been
implemented in variants specifically tailored to DFT codes. Below we give some interesting
examples which are far from being exhaustive but can give the reader a flavor of the variety
with which iterative methods can be used.

The ABINIT code [40] uses a variant of subspace iteration together with an iterative scheme
which improves the initial choice of vectors for the subspace through a form of conjugate gra-
dient algorithm. Orthogonality of the resulting vectors is ensured by a Rayleigh-Ritz method
applied to all the subspace each time one eigenvector approximant is modified. ABINIT in-
cludes also a block version of the algorithm where parallelism is offered across the several
vectors of the block as well as a variant minimizing the residual norm of the subspace vectors.

Among the several diagonalization methods it offers, the Vienna Ab-initio Simulation Package
(VASP) [12], uses a Davidson approach with a form of block preconditioning. This method is
recommended as a robust alternative to the other methods, though it is also mentioned as being
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more costly in some cases. The PARSEC code [41] also uses a modified version of the block
Davidson code where the correction equation is preconditioned with a Chebyshev polynomial
filter so as to enhance components of the new vectors which will be used to increase the sub-
space. This method also offers a double restart procedure with an outer and an inner restart
loop. The outer restart loop is very similar to a standard implicit restart in keeping the best
approximants among the computed subspace. The inner restart loop instead allows the addi-
tion of a new block of approximate vectors as soon as some of the sought after eigenpairs have
converged. This version of the Davidson method succeeds in better deflating converged vectors
and has the added ability to accept approximate solutions in place of the standard augmentation
vectors.

Many DFT codes offer some sort of generalization or modified version of a direct inversion of
the subspace iteration (DIIS), a method firstly proposed by Pulay [42, 43] in the early *80s. DIIS
is a form of Krylov subspace method where an initial subspace is improved through an iterative
scheme which individually minimize the residuals of the eigenvectors approximants. In this
approach, there is no need to orthogonalize each vector against all others after each update to
the basis vectors.

Overall it has been observed by many that Davidson-based algorithms are more robust than
methods based on local optimization (like DIIS or Conjugate Gradient). This observation is
not a unanimous viewpoint. For example, developers of PWscf and VASP seem to recommend
direct minimization, in spite of its less favorable speed. In the end implementations of each
specific algorithm is a key factor. With proper implementation, a Davidson- or Krylov-based
approach should be vastly superior to direct minimization.

S DFT-tailored algorithms: an example

As mentioned in the Introduction section, DFT-based methods lead to the self-consistent so-
lution of linearized eigenvalue problems. In other words the non-linear eigenvalue problem
generated by the KS equation is solved by a sequence of eigenproblems whose solution is in-
creasingly closer to the one of the original non-linear problem. In practice one starts with a
GHEVP PW . ANy = ABWy, solves for it, use the solutions to generate the new P so on
and so forth. In the end the computational scientist needs to solve a sequence of eigenproblems
(PO PO PN,

It is reasonable to assume — and it has been shown numerically in [44] — that the problems
in the sequence are correlated to each other. Thus a particularly tailored eigensolver could take
advantage of the correlation to improve performance and scalability. In this section we show
an example of such approach specifically designed for DFT methods based on the LAPW basis
set. The algorithm choice for this specific set-up is rather peculiar: an iterative eigensolver is
selected to solve dense eigenproblems, a pairing which is, in principle, unfavorable. We report
below its properties and the numerical performance it achieves.

Chebyshev Filtered Subspace Iteration — Subspace Iteration complemented with a Cheby-
shev polynomial filter is a well known algorithm in the literature [45]. A version of it was
recently developed for a real space dicretization of DFT by Chelikowsky et Al. [46, 47] and
included in the PARSEC code. By using a polynomial filter on the initial block of inputed vec-
tors the method experiences a high rate of acceleration. Since the block of vectors spanning
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the invariant subspace could easily become linearly dependent the subspace iteration is usually
complemented with some re-orthogonalization procedure.

The Chebyshev Filtered Subspace Iteration (ChFSI) algorithm described here is a slightly more
sophisticated version of the basic accelerated subspace iteration. This variant is specifically
tailored for DFT-like sequences of eigenproblems and it has been developed with the LAPW
discretization in mind. In particular the ChFSI algorithm takes advantage of the eigenvectors of
the eigenproblem of the (¢)-SCF cycle and uses them as input to solve for the eigenproblem at
the (¢ + 1)-SCF cycle.

The whole algorithm is illustrated in the Algorithm 3 scheme. Notice that the initial input is not
the initial GHEVP Az = A\B®z but its reduction to standard form H¥) = L' A L~T where
BY — LLT and YV are the eigenvectors of H“~Y. ChFSI uses few Lanczos iterations
(1ine 1) so as to estimate the upper limit of the eigenproblem spectrum [48]. This estimate
is necessary for the correct usage of the filter based on Chebyshev polynomials [45]. After
the Chebyshev filter step (Line 3) the resulting block of vectors is re-orthonormalized using
a simple QR factorization (1ine 4) followed by a Rayleigh-Ritz procedure (1ine 5). At
the end of the Rayleigh-Ritz step eigenvector residuals are computed, converged eigenpairs are
deflated and locked (1ine 13) while the non-converged vectors are sent again to the filter to
repeat the whole procedure.

Algorithm 3 Chebyshev Filtered Subspace Iteration with locking

Require: Matrix H) of the DGEVP reduced to standard form, approximate eigenvectors

YD = [gﬁ“”, e ,g)l(fg,l)] and eigenvalues A§“) and )\&ZE_VIJr)l.
Ensure: Wanted eigenpairs (A,Y) .
1: Estimate the largest eigenvalue. > LANCZOS
2: repeat R R
3: Filter the vectors, Y = C,,(Y). > CHEBYSHEV FILTER
4: Re-orthonormalize Y. R R > QR ALGORITHM
5: Compute Rayleigh quotient G = YTfI EE)Y. > RAYLEIGH-RITZ (Start)
6: Solve the reduced problem GW = WA.
7: Compute Y =Y W. > RAYLEIGH-RITZ (End)
. DEFLATION & LOCKING
8: for i = converged — NEV do >
o (Start)
9: if 7(Y.;,A;) < TOL then
10: A= [A Ai:|
11 Y =[YY,]
12: end if
DEFLATION & LOCKING
13: end for

" (End)
14: until converged > NEV

The Chebyshev polynomial filter is at the core of the algorithm. The vectors Y are filtered
exploiting the 3-terms recurrence relation which defines Chebyshev polynomials of the first
kind ) R R R R

Cri (V) = 2 H Coa(¥) = Cpua(V) ; C(¥) = Co(H) - V. (4)
This construction implies all operations internal to the filter are executed through the use of
ZGEMM, the most performant among BLAS 3 routines. Since roughly 90% of the total CPU
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time is spent in the filter, the massive use of ZGEMM makes ChFSI quite an efficient algorithm
and potentially a very scalable one. The parallel MPI version of ChFSI (EleChFSI) is imple-
mented within the Elemental library. The reduced eigenproblem in the Rayleigh-Ritz step is
solved using a parallel implementation of the MRRR eigensolver (EleMRRR).

Performance and scalability — In the plots below we report on the scalability of EleChFSI
and its performance when compared with the fastest direct method available on the market as
shown in [49].

Plot (a) of Fig. 3 illustrate the strong scalability of EleChFSI showing a steady decrease of CPU
time as the number of cores increases. The rate of reduction is practically the same for both
atomic systems despite their size differ by more than 30%. This plot shows that EleChFSI is
extremely efficient even when the ratio of data per processor is not optimal. This result is due
both on the re-use of eigenvectors of the previous SCF and on the extensive use of BLAS within
the Elemental framework.
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(a) EleChFSI Strong scalability. (b) EleChFSI performance.

Fig. 3: EleChFSI strong scalability and performance. In plot (a) the size of the eigenproblems
are kept fixed while the number of cores is progressively increased. Eigenproblems of size
n = 13,379 and n = 9,273 are shown. In plot (b) EleChFSI is compared with EleMRRR on
eigenproblems of increasing self-consistent cycle index { for a sequence of eigenproblems with
n =9,273.

Compared to direct solvers, EleChFSI promises to be quite competitive. Depending on the
number of eigenpairs computed, the algorithm implementation is even faster than EleMRRR.
In plot (b) of Fig. 3 EleChFSI is already faster than EleMRRR for half of the eigenproblems in
the sequence (64 cores). When the tests are repeated with 128 cores EleChFSI is inequivocably
the faster of the two algorithms. Since the fraction of the spectrum computed in plot (b) is
~ 3%, Fig. 3 shows that EleChFSI scales better than EleMRRR and is more performant when
the sought number of eigenpairs is not too high.
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