000153333 001__ 153333
000153333 005__ 20210129213724.0
000153333 0247_ $$2doi$$a10.1038/nature13017
000153333 0247_ $$2ISSN$$a1476-4687
000153333 0247_ $$2ISSN$$a0028-0836
000153333 0247_ $$2WOS$$aWOS:000334403000046
000153333 0247_ $$2altmetric$$aaltmetric:2284554
000153333 0247_ $$2pmid$$apmid:24740067
000153333 037__ $$aFZJ-2014-02965
000153333 082__ $$a070
000153333 1001_ $$0P:(DE-HGF)0$$aPop, Ioan M.$$b0$$eCorresponding Author
000153333 245__ $$aCoherent suppression of electromagnetic dissipation due to superconducting quasiparticles
000153333 260__ $$aLondon [u.a.]$$bNature Publising Group78092$$c2014
000153333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1399276937_3039
000153333 3367_ $$2DataCite$$aOutput Types/Journal article
000153333 3367_ $$00$$2EndNote$$aJournal Article
000153333 3367_ $$2BibTeX$$aARTICLE
000153333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153333 3367_ $$2DRIVER$$aarticle
000153333 520__ $$aOwing to the low-loss propagation of electromagnetic signals in superconductors, Josephson junctions constitute ideal building blocks for quantum memories, amplifiers, detectors and high-speed processing units, operating over a wide band of microwave frequencies. Nevertheless, although transport in superconducting wires is perfectly lossless for direct current, transport of radio-frequency signals can be dissipative in the presence of quasiparticle excitations above the superconducting gap1. Moreover, the exact mechanism of this dissipation in Josephson junctions has never been fully resolved experimentally. In particular, Josephson’s key theoretical prediction that quasiparticle dissipation should vanish in transport through a junction when the phase difference across the junction is π (ref. 2) has never been observed3. This subtle effect can be understood as resulting from the destructive interference of two separate dissipative channels involving electron-like and hole-like quasiparticles. Here we report the experimental observation of this quantum coherent suppression of quasiparticle dissipation across a Josephson junction. As the average phase bias across the junction is swept through π, we measure an increase of more than one order of magnitude in the energy relaxation time of a superconducting artificial atom. This striking suppression of dissipation, despite the presence of lossy quasiparticle excitations above the superconducting gap, provides a powerful tool for minimizing decoherence in quantum electronic systems and could be directly exploited in quantum information experiments with superconducting quantum bits.
000153333 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000153333 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153333 7001_ $$0P:(DE-HGF)0$$aGeerlings, Kurtis$$b1
000153333 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b2$$ufzj
000153333 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, Robert J.$$b3
000153333 7001_ $$0P:(DE-HGF)0$$aGlazman, Leonid I.$$b4
000153333 7001_ $$0P:(DE-HGF)0$$aDevoret, Michel H.$$b5
000153333 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/nature13017$$gVol. 508, no. 7496, p. 369 - 372$$n7496$$p369 - 372$$tNature <London>$$v508$$x1476-4687$$y2014
000153333 8564_ $$uhttps://juser.fz-juelich.de/record/153333/files/FZJ-2014-02965.pdf$$yRestricted$$zPublished final document.
000153333 909CO $$ooai:juser.fz-juelich.de:153333$$pVDB
000153333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153333 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000153333 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000153333 9141_ $$y2014
000153333 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153333 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153333 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153333 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153333 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153333 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000153333 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000153333 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153333 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000153333 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000153333 920__ $$lyes
000153333 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000153333 980__ $$ajournal
000153333 980__ $$aVDB
000153333 980__ $$aI:(DE-Juel1)PGI-2-20110106
000153333 980__ $$aUNRESTRICTED