001     153348
005     20210129213727.0
024 7 _ |a WOS:000333274400005
|2 WOS
037 _ _ |a FZJ-2014-02980
082 _ _ |a 540
100 1 _ |a Olubiyi, Olujide
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Amyloid Aggregation Inhibitory Mechanism of Arginine-rich D-peptides
260 _ _ |a Hilversum [u.a.]
|c 2014
|b Bentham Science Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1399880344_4089
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |a Campus-weite Veröffentlichung erwünschtD. Willbold und B. Strodel sind beide "Corresponding Authors".
520 _ _ |a It is widely believed that Alzheimer's disease pathogenesis is driven by the production and deposition of the amyloid-β peptide (Aβ) in the brain. In this study, we employ a combination of in silico and in vitro approaches to investigate the inhibitory properties of selected arginine-rich D-enantiomeric peptides (D-peptides) against amyloid aggregation. The D-peptides include D3, a 12-residue peptide with anti-amyloid potencies demonstrated in vitro and in vivo, RD2, a scrambled sequence of D3, as well as truncated RD2 variants. Using a global optimization method together with binding free energy calculations followed by molecular dynamics simulations, we perform a detailed analysis of D-peptide binding to Aβ monomer and a fibrillar Aβ structure. Results obtained from both molecular simulations and surface plasmon resonance experiments reveal a strong binding of D3 and RD2 to Aβ, leading to a significant reduction in the amount of β structures in both monomer and fibril, which was also demonstrated in Thioflavin T assays. The binding of the D-peptides to Aβ is driven by electrostatic interactions, mostly involving the D-arginine residues and Glu11, Glu22 and Asp23 of Aβ. Furthermore, we show that the anti-amyloid activities of the D-peptides depend on the length and sequence of the Dpeptide, its ability to form multiple weak hydrophobic interactions with Aβ, as well as the Aβ oligomer size.
536 _ _ |a 452 - Structural Biology (POF2-452)
|0 G:(DE-HGF)POF2-452
|c POF2-452
|f POF II
|x 0
700 1 _ |a Frenzel, Daniel
|0 P:(DE-Juel1)145441
|b 1
700 1 _ |a Bartnik, Dirk
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Glück, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brener, O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 5
700 1 _ |a Funke, S. A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 7
|e Corresponding Author
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 8
773 _ _ |0 PERI:(DE-600)2034240-8
|p 1448-1457
|t Current medicinal chemistry
|v 21
|y 2014
|x 1875-533X
856 4 _ |u http://www.ingentaconnect.com/content/ben/cmc/2014/00000021/00000012/art00005
856 4 _ |u https://juser.fz-juelich.de/record/153348/files/FZJ-2014-02980.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153348
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145441
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132024
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-452
|2 G:(DE-HGF)POF2-400
|v Structural Biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21