000153366 001__ 153366 000153366 005__ 20240619092032.0 000153366 0247_ $$2doi$$a10.1021/ja5002955 000153366 0247_ $$2ISSN$$a0002-7863 000153366 0247_ $$2ISSN$$a1520-5126 000153366 0247_ $$2WOS$$aWOS:000334572200039 000153366 037__ $$aFZJ-2014-02997 000153366 082__ $$a540 000153366 1001_ $$0P:(DE-HGF)0$$aRocco, Mattia$$b0$$eCorresponding Author 000153366 245__ $$aA Comprehensive Mechanism of Fibrin Network Formation Involving Early Branching and Delayed Single- to Double-Strand Transition from Coupled Time-Resolved X-ray/Light-Scattering Detection 000153366 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2014 000153366 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426156204_8060 000153366 3367_ $$2DataCite$$aOutput Types/Journal article 000153366 3367_ $$00$$2EndNote$$aJournal Article 000153366 3367_ $$2BibTeX$$aARTICLE 000153366 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153366 3367_ $$2DRIVER$$aarticle 000153366 520__ $$aThe formation of a fibrin network following fibrinogen enzymatic activation is the central event in blood coagulation and has important biomedical and biotechnological implications. A non-covalent polymerization reaction between macromolecular monomers, it consists basically of two complementary processes: elongation/branching generates an interconnected 3D scaffold of relatively thin fibrils, and cooperative lateral aggregation thickens them more than 10-fold. We have studied the early stages up to the gel point by fast fibrinogen:enzyme mixing experiments using simultaneous small-angle X-ray scattering and wide-angle, multi-angle light scattering detection. The coupled evolutions of the average molecular weight, size, and cross section of the solutes during the fibrils growth phase were thus recovered. They reveal that extended structures, thinner than those predicted by the classic half-staggered, double-stranded mechanism, must quickly form. Following extensive modeling, an initial phase is proposed in which single-bonded “Y-ladder” polymers rapidly elongate before undergoing a delayed transition to the double-stranded fibrils. Consistent with the data, this alternative mechanism can intrinsically generate frequent, random branching points in each growing fibril. The model predicts that, as a consequence, some branches in these expanding “lumps” eventually interconnect, forming the pervasive 3D network. While still growing, other branches will then undergo a Ca2+/length-dependent cooperative collapse on the resulting network scaffolding filaments, explaining their sudden thickening, low final density, and basic mechanical properties 000153366 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0 000153366 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x1 000153366 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000153366 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0 000153366 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x2 000153366 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x1 000153366 65017 $$0V:(DE-MLZ)GC-130$$2V:(DE-HGF)$$aLife Science and Health$$x0 000153366 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eExternal Measurement$$x0 000153366 7001_ $$0P:(DE-HGF)0$$aMolteni, Matteo$$b1 000153366 7001_ $$0P:(DE-HGF)0$$aPonassi, Marco$$b2 000153366 7001_ $$0P:(DE-HGF)0$$aGiachi, Guido$$b3 000153366 7001_ $$0P:(DE-HGF)0$$aFrediani, Marco$$b4 000153366 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b5$$ufzj 000153366 7001_ $$0P:(DE-HGF)0$$aProfumo, Aldo$$b6 000153366 7001_ $$0P:(DE-HGF)0$$aTrevarin, Didier$$b7 000153366 7001_ $$0P:(DE-HGF)0$$aCardinali, Barbara$$b8 000153366 7001_ $$0P:(DE-HGF)0$$aVachette, Patrice$$b9 000153366 7001_ $$0P:(DE-HGF)0$$aFerri, Fabio$$b10 000153366 7001_ $$0P:(DE-HGF)0$$aPérez, Javier$$b11 000153366 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja5002955$$gVol. 136, no. 14, p. 5376 - 5384$$n14$$p5376 - 5384$$tJournal of the American Chemical Society$$v136$$x1520-5126$$y2014 000153366 8564_ $$zPublished final document. 000153366 8564_ $$uhttps://juser.fz-juelich.de/record/153366/files/FZJ-2014-02997.pdf$$yRestricted$$zPublished final document. 000153366 909CO $$ooai:juser.fz-juelich.de:153366$$pVDB$$pVDB:MLZ 000153366 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000153366 9132_ $$0G:(DE-HGF)POF3-431$$1G:(DE-HGF)POF3-430$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lVerkehr$$vTerrestrial Vehicles$$x0 000153366 9132_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1 000153366 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0 000153366 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x1 000153366 9141_ $$y2014 000153366 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000153366 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000153366 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000153366 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000153366 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000153366 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000153366 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000153366 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000153366 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000153366 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000153366 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000153366 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000153366 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000153366 920__ $$lyes 000153366 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x0 000153366 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1 000153366 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x2 000153366 980__ $$ajournal 000153366 980__ $$aVDB 000153366 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000153366 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000153366 980__ $$aI:(DE-Juel1)ICS-1-20110106 000153366 980__ $$aUNRESTRICTED 000153366 981__ $$aI:(DE-Juel1)IBI-8-20200312 000153366 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000153366 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000153366 981__ $$aI:(DE-Juel1)ICS-1-20110106