001 | 153366 | ||
005 | 20240619092032.0 | ||
024 | 7 | _ | |a 10.1021/ja5002955 |2 doi |
024 | 7 | _ | |a 0002-7863 |2 ISSN |
024 | 7 | _ | |a 1520-5126 |2 ISSN |
024 | 7 | _ | |a WOS:000334572200039 |2 WOS |
037 | _ | _ | |a FZJ-2014-02997 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Rocco, Mattia |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
245 | _ | _ | |a A Comprehensive Mechanism of Fibrin Network Formation Involving Early Branching and Delayed Single- to Double-Strand Transition from Coupled Time-Resolved X-ray/Light-Scattering Detection |
260 | _ | _ | |a Washington, DC |c 2014 |b American Chemical Society |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1426156204_8060 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The formation of a fibrin network following fibrinogen enzymatic activation is the central event in blood coagulation and has important biomedical and biotechnological implications. A non-covalent polymerization reaction between macromolecular monomers, it consists basically of two complementary processes: elongation/branching generates an interconnected 3D scaffold of relatively thin fibrils, and cooperative lateral aggregation thickens them more than 10-fold. We have studied the early stages up to the gel point by fast fibrinogen:enzyme mixing experiments using simultaneous small-angle X-ray scattering and wide-angle, multi-angle light scattering detection. The coupled evolutions of the average molecular weight, size, and cross section of the solutes during the fibrils growth phase were thus recovered. They reveal that extended structures, thinner than those predicted by the classic half-staggered, double-stranded mechanism, must quickly form. Following extensive modeling, an initial phase is proposed in which single-bonded “Y-ladder” polymers rapidly elongate before undergoing a delayed transition to the double-stranded fibrils. Consistent with the data, this alternative mechanism can intrinsically generate frequent, random branching points in each growing fibril. The model predicts that, as a consequence, some branches in these expanding “lumps” eventually interconnect, forming the pervasive 3D network. While still growing, other branches will then undergo a Ca2+/length-dependent cooperative collapse on the resulting network scaffolding filaments, explaining their sudden thickening, low final density, and basic mechanical properties |
536 | _ | _ | |a 451 - Soft Matter Composites (POF2-451) |0 G:(DE-HGF)POF2-451 |c POF2-451 |f POF II |x 0 |
536 | _ | _ | |a 54G - JCNS (POF2-54G24) |0 G:(DE-HGF)POF2-54G24 |c POF2-54G24 |f POF II |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
650 | 2 | 7 | |a Biology |x 0 |2 V:(DE-HGF) |0 V:(DE-MLZ)SciArea-160 |
650 | 1 | 7 | |a Health and Life |0 V:(DE-MLZ)GC-130-2016 |2 V:(DE-HGF) |x 2 |
650 | 1 | 7 | |a Health and Life |0 V:(DE-MLZ)GC-130-1 |2 V:(DE-HGF) |x 1 |
650 | 1 | 7 | |a Life Science and Health |x 0 |2 V:(DE-HGF) |0 V:(DE-MLZ)GC-130 |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e External Measurement |x 0 |
700 | 1 | _ | |a Molteni, Matteo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ponassi, Marco |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Giachi, Guido |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Frediani, Marco |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Koutsioumpas, Alexandros |0 P:(DE-Juel1)158075 |b 5 |u fzj |
700 | 1 | _ | |a Profumo, Aldo |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Trevarin, Didier |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Cardinali, Barbara |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Vachette, Patrice |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ferri, Fabio |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Pérez, Javier |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1021/ja5002955 |g Vol. 136, no. 14, p. 5376 - 5384 |0 PERI:(DE-600)1472210-0 |n 14 |p 5376 - 5384 |t Journal of the American Chemical Society |v 136 |y 2014 |x 1520-5126 |
856 | 4 | _ | |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/153366/files/FZJ-2014-02997.pdf |z Published final document. |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:153366 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)158075 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr |l Verkehr |1 G:(DE-HGF)POF3-430 |0 G:(DE-HGF)POF3-431 |2 G:(DE-HGF)POF3-400 |v Terrestrial Vehicles |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 1 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-451 |2 G:(DE-HGF)POF2-400 |v Soft Matter Composites |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l BioSoft |
913 | 1 | _ | |a DE-HGF |b Struktur der Materie |1 G:(DE-HGF)POF2-540 |0 G:(DE-HGF)POF2-54G24 |2 G:(DE-HGF)POF2-500 |v JCNS |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Forschung mit Photonen, Neutronen, Ionen |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II |l JCNS-FRM-II |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-1-20110106 |k ICS-1 |l Neutronenstreuung |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)ICS-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-8-20200312 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
981 | _ | _ | |a I:(DE-Juel1)ICS-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|