000153441 001__ 153441
000153441 005__ 20210129213735.0
000153441 0247_ $$2doi$$a10.1007/s11104-013-1990-8
000153441 0247_ $$2ISSN$$a0032-079X
000153441 0247_ $$2ISSN$$a1573-5036
000153441 0247_ $$2wos$$aWOS:000333614600019
000153441 037__ $$aFZJ-2014-03048
000153441 082__ $$a570
000153441 1001_ $$0P:(DE-Juel1)140338$$aSchröder, Natalie$$b0$$eCorresponding Author$$ufzj
000153441 245__ $$aLinking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model
000153441 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000153441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1399614530_29617
000153441 3367_ $$2DataCite$$aOutput Types/Journal article
000153441 3367_ $$00$$2EndNote$$aJournal Article
000153441 3367_ $$2BibTeX$$aARTICLE
000153441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153441 3367_ $$2DRIVER$$aarticle
000153441 520__ $$aAims: Soil salinity can cause salt plant stress by reducing plant transpiration and yield due to very low osmotic potentials in the soil. For predicting this reduction, we present a simulation study to (i) identify a suitable functional form of the transpiration reduction function and (ii) to explain the different shapes of empirically observed reduction functions.MethodsWe used high resolution simulations with a model that couples 3D water flow and salt transport in the soil towards individual roots with flow in the root system.ResultsThe simulations demonstrated that the local total water potential at the soil-root interface, i.e. the sum of the matric and osmotic potentials, is for a given root system, uniquely and piecewise linearly related to the transpiration rate. Using bulk total water potentials, i.e. spatially and temporally averaged potentials in the soil around roots, sigmoid relations were obtained. Unlike for the local potentials, the sigmoid relations were non-unique functions of the total bulk potential but depended on the contribution of the bulk osmotic potential.ConclusionsTo a large extent, Transpiration reduction is controlled by water potentials at the soil-root interface. Since spatial gradients in water potentials around roots are different for osmotic and matric potentials, depending on the root density and on soil hydraulic properties, transpiration reduction functions in terms of bulk water potentials cannot be transferred to other conditions, i.e. soil type, salt content, root density, beyond the conditions for which they were derived. Such a transfer could be achieved by downscaling to the soil-root interface using simulations with a high resolution process model.
000153441 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000153441 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x1
000153441 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153441 7001_ $$0P:(DE-HGF)0$$aLazarovitch, Naftali$$b1
000153441 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2$$ufzj
000153441 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000153441 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b4$$ufzj
000153441 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-013-1990-8$$gVol. 377, no. 1-2, p. 277 - 293$$n1-2$$p277 - 293$$tPlant and soil$$v377$$x1573-5036$$y2014
000153441 8564_ $$uhttps://juser.fz-juelich.de/record/153441/files/FZJ-2014-03048.pdf$$yRestricted$$zPublished final document.
000153441 909CO $$ooai:juser.fz-juelich.de:153441$$pVDB:Earth_Environment$$pVDB
000153441 9141_ $$y2014
000153441 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153441 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153441 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153441 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153441 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153441 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153441 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000153441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140338$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153441 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000153441 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000153441 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x1
000153441 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000153441 980__ $$ajournal
000153441 980__ $$aVDB
000153441 980__ $$aI:(DE-Juel1)IBG-3-20101118
000153441 980__ $$aUNRESTRICTED