001     153441
005     20210129213735.0
024 7 _ |a 10.1007/s11104-013-1990-8
|2 doi
024 7 _ |a 0032-079X
|2 ISSN
024 7 _ |a 1573-5036
|2 ISSN
024 7 _ |a WOS:000333614600019
|2 wos
037 _ _ |a FZJ-2014-03048
082 _ _ |a 570
100 1 _ |a Schröder, Natalie
|0 P:(DE-Juel1)140338
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model
260 _ _ |a Dordrecht [u.a.]
|c 2014
|b Springer Science + Business Media B.V
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1399614530_29617
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Aims: Soil salinity can cause salt plant stress by reducing plant transpiration and yield due to very low osmotic potentials in the soil. For predicting this reduction, we present a simulation study to (i) identify a suitable functional form of the transpiration reduction function and (ii) to explain the different shapes of empirically observed reduction functions.MethodsWe used high resolution simulations with a model that couples 3D water flow and salt transport in the soil towards individual roots with flow in the root system.ResultsThe simulations demonstrated that the local total water potential at the soil-root interface, i.e. the sum of the matric and osmotic potentials, is for a given root system, uniquely and piecewise linearly related to the transpiration rate. Using bulk total water potentials, i.e. spatially and temporally averaged potentials in the soil around roots, sigmoid relations were obtained. Unlike for the local potentials, the sigmoid relations were non-unique functions of the total bulk potential but depended on the contribution of the bulk osmotic potential.ConclusionsTo a large extent, Transpiration reduction is controlled by water potentials at the soil-root interface. Since spatial gradients in water potentials around roots are different for osmotic and matric potentials, depending on the root density and on soil hydraulic properties, transpiration reduction functions in terms of bulk water potentials cannot be transferred to other conditions, i.e. soil type, salt content, root density, beyond the conditions for which they were derived. Such a transfer could be achieved by downscaling to the soil-root interface using simulations with a high resolution process model.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Lazarovitch, Naftali
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 2
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 4
|u fzj
773 _ _ |a 10.1007/s11104-013-1990-8
|g Vol. 377, no. 1-2, p. 277 - 293
|0 PERI:(DE-600)1478535-3
|n 1-2
|p 277 - 293
|t Plant and soil
|v 377
|y 2014
|x 1573-5036
856 4 _ |u https://juser.fz-juelich.de/record/153441/files/FZJ-2014-03048.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153441
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140338
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129477
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21