001     153465
005     20220930130029.0
024 7 _ |2 doi
|a 10.1016/j.isprsjprs.2014.02.005
024 7 _ |2 ISSN
|a 1872-8235
024 7 _ |2 ISSN
|a 0924-2716
024 7 _ |2 WOS
|a WOS:000335104700005
024 7 _ |a altmetric:2171850
|2 altmetric
037 _ _ |a FZJ-2014-03063
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)143638
|a Hasan, Sayeh
|b 0
|e Corresponding Author
245 _ _ |a Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1399614893_30637
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.
536 _ _ |0 G:(DE-HGF)POF2-246
|a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|c POF2-246
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)129506
|a Montzka, Carsten
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Rüdiger, Christoph
|b 2
700 1 _ |0 P:(DE-Juel1)145515
|a Ali, Muhammed
|b 3
700 1 _ |0 P:(DE-Juel1)129440
|a Bogena, Heye
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 5
773 _ _ |0 PERI:(DE-600)2012663-3
|a 10.1016/j.isprsjprs.2014.02.005
|g Vol. 91, p. 59 - 71
|p 59 - 71
|t ISPRS journal of photogrammetry and remote sensing
|v 91
|x 0924-2716
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/153465/files/FZJ-2014-03063.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153465
|p OpenAPC
|p VDB
|p VDB:Earth_Environment
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143638
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129506
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145515
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129440
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |0 G:(DE-HGF)POF2-246
|1 G:(DE-HGF)POF2-240
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21