000153472 001__ 153472
000153472 005__ 20210129213738.0
000153472 0247_ $$2doi$$a10.1055/s-0034-1371201
000153472 0247_ $$2ISSN$$a1439-4081
000153472 0247_ $$2ISSN$$a1434-0275
000153472 037__ $$aFZJ-2014-03070
000153472 082__ $$a610
000153472 1001_ $$0P:(DE-HGF)0$$aNettekoven, C.$$b0$$eCorresponding Author
000153472 1112_ $$a58. Jahrestagung der Deutschen Gesellschaft für Klinische Neurophysiologie und Funktionelle Bildgebung (DGKN)$$cBerlin$$d2014-03-19 - 2014-03-22$$wGermany
000153472 245__ $$aAre individual responses to theta-burst rTMS in cortical excitability related to changes in motor network connectivity?
000153472 260__ $$aStuttgart [u.a.]$$bThieme$$c2014
000153472 300__ $$a45
000153472 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1399614034_29936
000153472 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000153472 3367_ $$033$$2EndNote$$aConference Paper
000153472 3367_ $$2ORCID$$aCONFERENCE_PAPER
000153472 3367_ $$2DataCite$$aOutput Types/Conference Paper
000153472 3367_ $$2DRIVER$$aconferenceObject
000153472 3367_ $$2BibTeX$$aINPROCEEDINGS
000153472 520__ $$aIntermittent theta-burst stimulation (iTBS) effectively increases cortical excitability within the human brain (Huang et al., 2005). However, individual after-effects of iTBS vary between subjects, with a large proportion not responding at all in terms of changes in excitability (Ridding and Ziemann, 2010; Hamada et al., 2013). We here investigated whether subjects responding to iTBS show differential changes in resting-state functional connectivity (rsFC) within the cortical motor system compared to subjects with no response.14 healthy, right-handed subjects (m = 7, 27 ± 3 years) received iTBS over the left primary motor cortex (M1) on two days, separated by at least one week. Before and after iTBS-application (i) motor-evoked potentials (MEPs) or (ii) resting-state functional magnetic resonance imaging (fMRI) was assessed. Seed-based whole-brain rsFC was computed for the stimulated M1.Subjects were divided into groups of responders and non-responders according to iTBS-induced changes in MEPs (criterion: increase of at least 10% compared to baseline). Following iTBS, rsFC between M1 and premotor areas was significantly higher in responders compared to both baseline (p ≤0.001, FWE-corrected) and non-responders (p ≤0.001, FWE-corrected). Furthermore, non-responders featured higher levels of pre-interventional rsFC compared to responders (p = 0.061, FWE-corrected). Individual changes in MEPs and rsFC did not correlate.Significant iTBS-induced modulations of rsFC were exclusively found for the group of iTBS-responders, suggesting that changes in cortical excitability and motor network rsFC are related. However, no linear correlation between changes in MEP-amplitudes and rsFC was evident. Furthermore, higher levels of pre-interventional rsFC might prevent iTBS-induced strengthening of premotor-M1 connections, possibly underlying the non-responsiveness to iTBS
000153472 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000153472 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000153472 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153472 7001_ $$0P:(DE-HGF)0$$aVolz, LJ$$b1
000153472 7001_ $$0P:(DE-HGF)0$$aKutscha, M.$$b2
000153472 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
000153472 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, C.$$b4$$ufzj
000153472 773__ $$0PERI:(DE-600)2063780-9$$a10.1055/s-0034-1371201$$gVol. 45, no. 01, p. s-0034-1371201$$n01$$pV22$$tKlinische Neurophysiologie$$v45$$x1439-4081$$y2014
000153472 909CO $$ooai:juser.fz-juelich.de:153472$$pVDB
000153472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153472 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000153472 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000153472 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000153472 9141_ $$y2014
000153472 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153472 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153472 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153472 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153472 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153472 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153472 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153472 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000153472 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000153472 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000153472 980__ $$acontrib
000153472 980__ $$aVDB
000153472 980__ $$ajournal
000153472 980__ $$aI:(DE-Juel1)INM-3-20090406
000153472 980__ $$aI:(DE-Juel1)INM-1-20090406
000153472 980__ $$aUNRESTRICTED
000153472 981__ $$aI:(DE-Juel1)INM-1-20090406