001     153477
005     20250314084110.0
020 _ _ |a 978-3-642-54419-4 (print)
020 _ _ |a 978-3-642-54420-0 (electronic)
024 7 _ |a 10.1007/978-3-642-54420-0_61
|2 doi
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a 0302-9743
|2 ISSN
037 _ _ |a FZJ-2014-03075
082 _ _ |a 004
100 1 _ |a Zhukov, Ilya
|0 P:(DE-Juel1)144419
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a Euro-Par 2013: Parallel Processing Workshops
|c Aachen
|d 2013-08-26 - 2013-08-27
|w Germany
245 _ _ |a Assessing Measurement and Analysis Performance and Scalability of Scalasca 2.0
260 _ _ |a Berlin, Heidelberg
|c 2014
|b Springer Berlin Heidelberg
295 1 0 |a Euro-Par 2013: Parallel Processing Workshops
300 _ _ |a 627 - 636
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1399880741_4092
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
490 0 _ |a Lecture Notes in Computer Science
|v 8374
520 _ _ |a The Scalasca toolset was developed to provide highly scalable performance measurement and analysis of scientific applications on current HPC platforms, including leadership systems such as IBM BlueGene/Q and more traditional Linux clusters. Its primary focus is support for C/C++/Fortran applications using MPI and OpenMP, and mixed-mode combinations thereof, offering detailed call-path profiles for each process and thread produced by runtime summarization or augmented with wait-state analysis of event traces. A new generation of Scalasca (2.0) uses the community-developed infrastructure comprising of Score-P and associated components, while continuing to provide the previous functionality. By comparing the new version of Scalasca with its predecessor, using the applications from the NPB3.3-MZ-MPI benchmark suite, we validate core functionality and assess overheads and scalability. Although adequate for general use, various aspects are identified for further improvement, particularly for larger scales.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Book, juser.fz-juelich.de
700 1 _ |a Wylie, Brian J. N.
|0 P:(DE-Juel1)132302
|b 1
|u fzj
773 _ _ |a 10.1007/978-3-642-54420-0_61
856 4 _ |u https://juser.fz-juelich.de/record/153477/files/FZJ-2014-03075.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153477
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144419
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132302
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21