000153642 001__ 153642
000153642 005__ 20250129092452.0
000153642 0247_ $$2Handle$$a2128/6746
000153642 037__ $$aFZJ-2014-03147
000153642 041__ $$aEnglish
000153642 1001_ $$0P:(DE-Juel1)156285$$aSchumann, Manuel$$b0$$eCorresponding Author$$ufzj
000153642 1112_ $$a10th World Conference on Neutron Radiography$$cGrindelwald$$d2014-10-05 - 2014-10-10$$gWCNR-10$$wSwitzerland
000153642 245__ $$aDetector Development for Neutron Imaging System for Radioactive-Waste Analysis (NISRA) with 14 MeV Neutrons
000153642 260__ $$c2014
000153642 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s153642
000153642 3367_ $$033$$2EndNote$$aConference Paper
000153642 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000153642 3367_ $$2ORCID$$aOTHER
000153642 3367_ $$2DRIVER$$aconferenceObject
000153642 3367_ $$2BibTeX$$aINPROCEEDINGS
000153642 520__ $$aRadioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radiotoxic and chemotoxic contents. In a cooperation framework Forschungszentrum Jülich, RWTH Aachen University and the Siemens AG are studying the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons produced by a neutron generator. Fast neutron imaging is a promising technique to assay large and dense items providing in complementarity to photon imaging additional information on the presence of structures in radioactive waste packages. However due to the low neutron emission of neutron generators (10^8 to 10^10 n/s in 4Pi) the challenging task resides in the development of an imaging detector (readout detector and neutron converter) with a high counting efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. In this study two different readout detectors are studied. The first one is a large amorphous silicon flat panel and the second is a photomultiplier based detector with crossed wavelength shifting fibres. For both readout detectors the same type of neutron converter a simple plastic scintillator or a polypropylene resin mixed with ZnS as scintillation material is considered. The performance of the two detection systems are presented and compared. Furthermore some results of Monte-Carlo simulations for their optimization with respect to different neutron converter types are given.
000153642 536__ $$0G:(DE-HGF)POF2-142$$a142 - Safety Research for Nuclear Waste Disposal (POF2-142)$$cPOF2-142$$fPOF II$$x0
000153642 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000153642 7001_ $$0P:(DE-Juel1)133882$$aEngels, Ralf$$b1$$ufzj
000153642 7001_ $$0P:(DE-HGF)0$$aFrank, M$$b2
000153642 7001_ $$0P:(DE-Juel1)156470$$aFurletova, Julia$$b3$$ufzj
000153642 7001_ $$0P:(DE-Juel1)130352$$aHavenith, Andreas$$b4$$ufzj
000153642 7001_ $$0P:(DE-Juel1)133902$$aKemmerling, Günter$$b5$$ufzj
000153642 7001_ $$0P:(DE-Juel1)130362$$aKettler, John$$b6$$ufzj
000153642 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, Eric$$b7$$ufzj
000153642 7001_ $$0P:(DE-Juel1)8460$$aSchitthelm, Oliver$$b8$$ufzj
000153642 7001_ $$0P:(DE-HGF)0$$aVasques, R.$$b9
000153642 773__ $$y2014
000153642 8564_ $$uhttps://juser.fz-juelich.de/record/153642/files/FZJ-2014-03147.pdf$$yOpenAccess
000153642 8564_ $$uhttps://juser.fz-juelich.de/record/153642/files/FZJ-2014-03147.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000153642 8564_ $$uhttps://juser.fz-juelich.de/record/153642/files/FZJ-2014-03147.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000153642 8564_ $$uhttps://juser.fz-juelich.de/record/153642/files/FZJ-2014-03147.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000153642 909CO $$ooai:juser.fz-juelich.de:153642$$pVDB$$pdriver$$popen_access$$popenaire
000153642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153642 9141_ $$y2014
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156285$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133882$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156470$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130352$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133902$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130362$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000153642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8460$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000153642 9132_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000153642 9131_ $$0G:(DE-HGF)POF2-142$$1G:(DE-HGF)POF2-140$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Sicherheitsforschung$$vSafety Research for Nuclear Waste Disposal$$x0
000153642 920__ $$lyes
000153642 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000153642 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000153642 9801_ $$aFullTexts
000153642 980__ $$aabstract
000153642 980__ $$aUNRESTRICTED
000153642 980__ $$aFullTexts
000153642 980__ $$aI:(DE-Juel1)IEK-6-20101013
000153642 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000153642 980__ $$aVDB
000153642 981__ $$aI:(DE-Juel1)PGI-4-20110106
000153642 981__ $$aI:(DE-Juel1)IFN-2-20101013
000153642 981__ $$aI:(DE-Juel1)ZEA-2-20090406