001     153663
005     20210129213753.0
024 7 _ |2 doi
|a 10.1103/PhysRevLett.112.186601
024 7 _ |2 ISSN
|a 0031-9007
024 7 _ |2 ISSN
|a 1079-7114
024 7 _ |2 WOS
|a WOS:000339629400015
024 7 _ |2 MLZ
|a PhysRevLett.112.186601
024 7 _ |2 Handle
|a 2128/9129
024 7 _ |a altmetric:2288826
|2 altmetric
037 _ _ |a FZJ-2014-03167
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Franz, C.
|b 0
|e Corresponding Author
245 _ _ |a Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn$_{1−x}$Fe$_{x}$Si
260 _ _ |a College Park, Md.
|b APS
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1403685520_4389
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We report an experimental and computational study of the Hall effect in Mn1−xFexSi, as complementedby measurements in Mn1−xCoxSi, when helimagnetic order is suppressed under substitutional doping.For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Underlarger doping the AHE remains small and consistent with the magnetization, while the THE grows by overa factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement withcalculations based on density functional theory. Our study provides the long-sought material-specificmicroscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THEoriginates in real-space Berry phases.
536 _ _ |0 G:(DE-HGF)POF2-422
|a 422 - Spin-based and quantum information (POF2-422)
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
693 _ _ |0 EXP:(DE-MLZ)MIRA-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)MIRA-20140101
|6 EXP:(DE-MLZ)NL6N-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MIRA: Multipurpose instrument
|f NL6N
|x 0
693 _ _ |0 EXP:(DE-MLZ)RESEDA-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)RESEDA-20140101
|6 EXP:(DE-MLZ)NL5S-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e RESEDA: Resonance spin echo spectrometer
|f NL5S
|x 1
700 1 _ |0 P:(DE-Juel1)130643
|a Freimuth, F.
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bauer, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Ritz, R.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Schnarr, C.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Duvinage, C.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Adams, T.
|b 6
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Rosch, A.
|b 8
700 1 _ |0 P:(DE-Juel1)130848
|a Mokrousov, Y.
|b 9
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Pfleiderer, C.
|b 10
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.112.186601
|g Vol. 112, no. 18, p. 186601
|n 18
|p 186601
|t Physical review letters
|v 112
|x 1079-7114
|y 2014
856 4 _ |y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/153663/files/FZJ-2014-03167.pdf
|y OpenAccess
|z Published final document.
909 C O |o oai:juser.fz-juelich.de:153663
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130643
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130848
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |0 G:(DE-HGF)POF2-422
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21