000153689 001__ 153689
000153689 005__ 20240708133730.0
000153689 0247_ $$2doi$$a10.1117/12.2052330
000153689 0247_ $$2WOS$$aWOS:000339320100007
000153689 037__ $$aFZJ-2014-03189
000153689 1001_ $$0P:(DE-Juel1)157887$$aSmeets, Michael$$b0$$ufzj
000153689 1112_ $$aSPIE Photonics Europe$$cBrussels$$d2014-04-14 - 2014-04-17$$wBelgium
000153689 245__ $$aOptimizing the geometry of plasmonic reflection grating back contacts for improved light trapping in prototype amorphous silicon thin-film solar cells
000153689 260__ $$c2014
000153689 29510 $$aProceedings of SPIE
000153689 300__ $$a91400D
000153689 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1403096860_30224
000153689 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000153689 3367_ $$033$$2EndNote$$aConference Paper
000153689 3367_ $$2ORCID$$aCONFERENCE_PAPER
000153689 3367_ $$2DataCite$$aOutput Types/Conference Paper
000153689 3367_ $$2DRIVER$$aconferenceObject
000153689 3367_ $$2BibTeX$$aINPROCEEDINGS
000153689 520__ $$aIn this study, we experimentally investigate the light-trapping effect of plasmonic reflection grating back contacts in prototype hydrogenated amorphous silicon thin-film solar cells in substrate configuration. The plasmonic reflection grating back contacts consist of periodically arranged Ag nanostructures on flat Ag reflectors. By varying the geometrical parameters of these back contacts, design strategies for optimized light trapping are identified. First, a general correlation between a reduction of the period of the plasmonic reflection grating back contact and an increase of the absorptance as well as external quantum efficiency is found for various unit cells of the nanostructures i.e. square unit cell, hexagonal unit cell and face-centered unit cell. Second, the width of the nanostructures is varied. With increasing width, an enhanced light-trapping effect of the thin-film solar cells is found independent of the period. As a result, an optimized design for improved light trapping in the studied thin-film solar cells is a combination of a period of 600 nm and a structure width of 350 nm. Solar cells fabricated on plasmonic reflection grating back contacts with this optimized configuration yield enhanced power conversion efficiencies as compared to reference solar cells processed on state-of-the-art randomly textured substrates. In detail, the power conversion efficiency is enhanced by around 0.2 % from 9.1 % to 9.3 %. This increase is largely due to the enhancement of the short-circuit current density of around 7 % from 14.7 mA/cm2 to 15.6 mA/cm2.
000153689 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000153689 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000153689 588__ $$aDataset connected to CrossRef Conference
000153689 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b1$$ufzj
000153689 7001_ $$0P:(DE-Juel1)130830$$aMeier, Matthias$$b2$$ufzj
000153689 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3$$ufzj
000153689 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b4$$ufzj
000153689 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b5$$ufzj
000153689 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b6$$ufzj
000153689 770__ $$aPhotonics for Solar Energy Systems V
000153689 773__ $$a10.1117/12.2052330$$p91400D$$v9140
000153689 909CO $$ooai:juser.fz-juelich.de:153689$$pVDB
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157887$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130830$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000153689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000153689 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000153689 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000153689 9141_ $$y2014
000153689 920__ $$lyes
000153689 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000153689 980__ $$acontrib
000153689 980__ $$aVDB
000153689 980__ $$acontb
000153689 980__ $$aI:(DE-Juel1)IEK-5-20101013
000153689 980__ $$aUNRESTRICTED
000153689 981__ $$aI:(DE-Juel1)IMD-3-20101013