001     153689
005     20240708133730.0
024 7 _ |a 10.1117/12.2052330
|2 doi
024 7 _ |a WOS:000339320100007
|2 WOS
037 _ _ |a FZJ-2014-03189
100 1 _ |a Smeets, Michael
|0 P:(DE-Juel1)157887
|b 0
|u fzj
111 2 _ |a SPIE Photonics Europe
|c Brussels
|d 2014-04-14 - 2014-04-17
|w Belgium
245 _ _ |a Optimizing the geometry of plasmonic reflection grating back contacts for improved light trapping in prototype amorphous silicon thin-film solar cells
260 _ _ |c 2014
295 1 0 |a Proceedings of SPIE
300 _ _ |a 91400D
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1403096860_30224
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a In this study, we experimentally investigate the light-trapping effect of plasmonic reflection grating back contacts in prototype hydrogenated amorphous silicon thin-film solar cells in substrate configuration. The plasmonic reflection grating back contacts consist of periodically arranged Ag nanostructures on flat Ag reflectors. By varying the geometrical parameters of these back contacts, design strategies for optimized light trapping are identified. First, a general correlation between a reduction of the period of the plasmonic reflection grating back contact and an increase of the absorptance as well as external quantum efficiency is found for various unit cells of the nanostructures i.e. square unit cell, hexagonal unit cell and face-centered unit cell. Second, the width of the nanostructures is varied. With increasing width, an enhanced light-trapping effect of the thin-film solar cells is found independent of the period. As a result, an optimized design for improved light trapping in the studied thin-film solar cells is a combination of a period of 600 nm and a structure width of 350 nm. Solar cells fabricated on plasmonic reflection grating back contacts with this optimized configuration yield enhanced power conversion efficiencies as compared to reference solar cells processed on state-of-the-art randomly textured substrates. In detail, the power conversion efficiency is enhanced by around 0.2 % from 9.1 % to 9.3 %. This increase is largely due to the enhancement of the short-circuit current density of around 7 % from 14.7 mA/cm2 to 15.6 mA/cm2.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 1
|u fzj
700 1 _ |a Meier, Matthias
|0 P:(DE-Juel1)130830
|b 2
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 3
|u fzj
700 1 _ |a Carius, Reinhard
|0 P:(DE-Juel1)130225
|b 4
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 5
|u fzj
700 1 _ |a Paetzold, Ulrich W.
|0 P:(DE-Juel1)130282
|b 6
|u fzj
770 _ _ |a Photonics for Solar Energy Systems V
773 _ _ |a 10.1117/12.2052330
|p 91400D
|v 9140
909 C O |o oai:juser.fz-juelich.de:153689
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157887
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130830
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130225
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130282
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21