000153873 001__ 153873
000153873 005__ 20250129092455.0
000153873 0247_ $$2Handle$$a2128/7991
000153873 037__ $$aFZJ-2014-03352
000153873 041__ $$aEnglish
000153873 1001_ $$0P:(DE-Juel1)161528$$aDurini, Daniel$$b0$$eCorresponding Author$$ufzj
000153873 1112_ $$a7th Fraunhofer IMS Workshop "CMOS Imaging: From Photon to Camera", Duisburg, Germany, May 20-21, 2014$$cDuisburg$$d2014-05-20 - 2014-05-21$$gIMS CMOS Imaging Workshop$$wGermany
000153873 245__ $$aCMOS Technology for SPAD / SiPM: Results from the MiSPiA Project
000153873 260__ $$c2014
000153873 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s153873$$xInvited
000153873 3367_ $$033$$2EndNote$$aConference Paper
000153873 3367_ $$2DataCite$$aOther
000153873 3367_ $$2ORCID$$aLECTURE_SPEECH
000153873 3367_ $$2DRIVER$$aconferenceObject
000153873 3367_ $$2BibTeX$$aINPROCEEDINGS
000153873 520__ $$aMany demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of solid-state devices, but in many applications other single-photon detectors, like photomultiplier tubes, have been preferred so far due to their larger active area. We developed silicon SPADs with active area diameters as large as 500 µm in a fully standard CMOS process. The 500 µm SPAD exhibits 55% peak photon detection efficiency at 420 nm, 8 kcps of dark counting rate at 0°C, and high uniformity of the sensitivity in the active area. These devices can be used with on-chip integrated quenching circuitry, which reduces the afterpulsing probability, or with external ciruits to achieve even better photon-timing performances, as good as 92 ps FWHM for a 100 µm diameter SPAD. Owing to the state-of-the-art performance, not only compared to the CMOS SPADs but also SPADs developed in custom technologies, very high uniformity and low cros-talk probability, these CMOS SPADs can be succesfully employed in detector arrays and single-chip imagers for single-photon counting and timing applications. In order to solve the CMOS SPAD fill-factor problems, back-side illuminated SPAD (BackSPAD) technology was developed based on a 0.35 µm SOI-CMOS process, where the wafer containing readout circuitry fabricated in a standard CMOS technology is flip-bonded on top of the detector array SOI-wafer, the handle-wafer of which is then completely removed to enable back-side illumination.
000153873 536__ $$0G:(DE-HGF)POF2-434$$a434 - Optics and Photonics (POF2-434)$$cPOF2-434$$fPOF II$$x0
000153873 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x1
000153873 7001_ $$0P:(DE-HGF)0$$aWeyers, Sascha$$b1
000153873 7001_ $$0P:(DE-HGF)0$$aGoehlich, Andreas$$b2
000153873 7001_ $$0P:(DE-HGF)0$$aBrockherde, Werner$$b3
000153873 7001_ $$0P:(DE-HGF)0$$aPaschen, Uwe$$b4
000153873 7001_ $$0P:(DE-HGF)0$$aVogt, Holger$$b5
000153873 7001_ $$0P:(DE-HGF)0$$aFederica, Villa$$b6
000153873 7001_ $$0P:(DE-HGF)0$$aBronzi, Danilo$$b7
000153873 7001_ $$0P:(DE-HGF)0$$aTisa, Simone$$b8
000153873 7001_ $$0P:(DE-HGF)0$$aTosi, Alberto$$b9
000153873 7001_ $$0P:(DE-HGF)0$$aZappa, Franco$$b10
000153873 773__ $$y2014
000153873 8564_ $$uhttps://juser.fz-juelich.de/record/153873/files/FZJ-2014-03352.pdf$$yOpenAccess
000153873 8564_ $$uhttps://juser.fz-juelich.de/record/153873/files/FZJ-2014-03352.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000153873 8564_ $$uhttps://juser.fz-juelich.de/record/153873/files/FZJ-2014-03352.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000153873 8564_ $$uhttps://juser.fz-juelich.de/record/153873/files/FZJ-2014-03352.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000153873 909CO $$ooai:juser.fz-juelich.de:153873$$pdriver$$pVDB$$popen_access$$popenaire
000153873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153873 9132_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bPOF III$$lForschungsbereich Gesundheit$$vKrebsforschung$$x0
000153873 9132_ $$0G:(DE-HGF)POF3-533$$1G:(DE-HGF)POF3-530$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vScience and Technology of Nanosystems$$x1
000153873 9132_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bPOF III$$lForschungsbereich Materie$$vMaterie und Technologie$$x2
000153873 9131_ $$0G:(DE-HGF)POF2-434$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vOptics and Photonics$$x0
000153873 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x1
000153873 9141_ $$y2014
000153873 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153873 920__ $$lyes
000153873 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000153873 9801_ $$aFullTexts
000153873 980__ $$aconf
000153873 980__ $$aVDB
000153873 980__ $$aUNRESTRICTED
000153873 980__ $$aFullTexts
000153873 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000153873 981__ $$aI:(DE-Juel1)PGI-4-20110106