000153891 001__ 153891
000153891 005__ 20220930130029.0
000153891 0247_ $$2doi$$a10.1016/j.gca.2014.04.037
000153891 0247_ $$2ISSN$$a0016-7037
000153891 0247_ $$2ISSN$$a1872-9533
000153891 0247_ $$2WOS$$aWOS:000339176400004
000153891 037__ $$aFZJ-2014-03362
000153891 082__ $$a550
000153891 1001_ $$0P:(DE-Juel1)144687$$aHeil, Jannis$$b0
000153891 245__ $$aSite-specific 15N isotopic signatures of abiotically produced N$_{2}$O
000153891 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2014
000153891 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1401858991_21127
000153891 3367_ $$2DataCite$$aOutput Types/Journal article
000153891 3367_ $$00$$2EndNote$$aJournal Article
000153891 3367_ $$2BibTeX$$aARTICLE
000153891 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153891 3367_ $$2DRIVER$$aarticle
000153891 520__ $$aEfficient nitrous oxide (N2O) mitigation strategies require the identification of the main source and sink processes and their contribution to total soil N2O production. Several abiotic reactions of nitrification intermediates leading to N2O production are known, but their contribution to total N2O production in soils is uncertain. As the site preference (SP) of 15N in N2O is a promising tool to give more insight into N2O production processes, we investigated the SP of N2O produced by different abiotic reactions in a laboratory study. All reactions involved the nitrification intermediate hydroxylamine (NH2OH) in combination with nitrite (NO2−), Fe3+, Fe2+ and Cu2+, reactants commonly or potentially found in soils, at different concentrations and pH values. N2O production and its four main isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) were quantified simultaneously and online at high temporal resolution using quantum cascade laser absorption spectroscopy. Thereby, our study presents the first continuous analysis of δ18O in N2O. The experiments revealed the possibility of purely abiotic reactions over a wide range of acidity (pH 3–8) by different mechanisms. All studied abiotic pathways produced N2O with a characteristic SP in the range of 34–35‰, unaffected by process conditions and remaining constant over the course of the experiments. These findings reflect the benefit of continuous N2O isotopic analysis by laser spectroscopy, contribute new information to the challenging source partitioning of N2O emissions from soils, and emphasize the potentially significant role of coupled biotic–abiotic reactions in soils.
000153891 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000153891 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000153891 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153891 7001_ $$0P:(DE-HGF)0$$aWolf, Benjamin$$b1
000153891 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b2$$eCorresponding Author
000153891 7001_ $$0P:(DE-HGF)0$$aEmmenegger, Lukas$$b3
000153891 7001_ $$0P:(DE-HGF)0$$aTuzson, Béla$$b4
000153891 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000153891 7001_ $$0P:(DE-HGF)0$$aMohn, Joachim$$b6
000153891 773__ $$0PERI:(DE-600)1483679-8$$a10.1016/j.gca.2014.04.037$$gVol. 139, p. 72 - 82$$p72 - 82$$tGeochimica et cosmochimica acta$$v139$$x0016-7037$$y2014
000153891 8564_ $$uhttps://juser.fz-juelich.de/record/153891/files/FZJ-2014-03362.pdf$$yRestricted$$zPublished final document.
000153891 8767_ $$92014-05-19$$d2014-06-11$$eColour charges$$jZahlung erfolgt
000153891 909CO $$ooai:juser.fz-juelich.de:153891$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000153891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144687$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000153891 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000153891 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000153891 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000153891 9141_ $$y2014
000153891 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153891 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153891 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153891 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153891 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153891 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153891 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153891 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153891 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153891 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153891 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000153891 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000153891 980__ $$ajournal
000153891 980__ $$aVDB
000153891 980__ $$aI:(DE-Juel1)IBG-3-20101118
000153891 980__ $$aUNRESTRICTED
000153891 980__ $$aAPC