001     153892
005     20210129213813.0
024 7 _ |a 10.1007/s10021-013-9723-7
|2 doi
024 7 _ |a 1435-0629
|2 ISSN
024 7 _ |a 1432-9840
|2 ISSN
024 7 _ |a WOS:000332001500007
|2 wos
024 7 _ |a altmetric:1894460
|2 altmetric
037 _ _ |a FZJ-2014-03363
082 _ _ |a 570
100 1 _ |a Zhou, Minghua
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a N$_{2}$O and CH$_{4}$ Emissions, and NO$_{3}$ − Leaching on a Crop-Yield Basis from a Subtropical Rain-fed Wheat–Maize Rotation in Response to Different Types of Nitrogen Fertilizer
260 _ _ |a New York, NY
|c 2014
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1401859265_21127
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Guaranteeing high crop yields while reducing environmental impacts of nitrogen fertilizer use due to associated losses of N2O emissions and nitrate (NO3 −) leaching is a key challenge in the context of sustainable intensification of crop production. However, few field data sets are available that explore the effect of different forms of N management on yields as well as on N losses in the form of N2O or NO3 −. Here we report on a large-scale field lysimeter (8 × 4 m2) experiment, which was designed to determine soil CH4 and N2O emissions, NO3 − leaching losses and crop yields from a subtropical rain-fed wheat–maize rotation in the Sichuan Basin, one of the most intensively used agricultural regions in China. One control and three different fertilizer treatments with the same total rate of N application (280 kg N ha−1 y−1) were included: NF: control (no fertilizer); NPK: synthetic N fertilizer; OMNPK: synthetic N fertilizer plus pig manure; RSDNPK: synthetic N fertilizer plus crop residues. As compared to the standard NPK treatment, annual NO3 − leaching losses for OMNPK and RSDNPK treatments were decreased by 36 and 22%, respectively (P < 0.05). Similarly, crop yield-scaled NO3 − leaching for NPK treatment was higher than those for either OMNPK or RSDNPK treatments (P < 0.05). Direct N2O emissions for RSDNPK treatment were decreased as compared with NPK and OMNPK treatments (P < 0.05). Furthermore, the yield-scaled GWP (global warming potential) was lower for the treatments where either pig manure or crop residues were incorporated as compared to the standard NPK treatment (P < 0.05). Our study indicates that it is possible to reduce the negative environmental impact of NO3 − leaching and N2O emissions without compromising crop productivity. Yield-scaled NO3 − leaching, similar to the yield-scaled GWP, represents another valuable-integrated metric to address the dual goals of reducing nitrogen pollution and maintaining crop grain yield for a given agricultural system.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Zhu, Bo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 2
|u fzj
700 1 _ |a Bergmann, Jessica
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Yanqiang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Butterbach-Bahl, Klaus
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1007/s10021-013-9723-7
|g Vol. 17, no. 2, p. 286 - 301
|0 PERI:(DE-600)1478731-3
|n 2
|p 286 - 301
|t Ecosystems
|v 17
|y 2014
|x 1435-0629
856 4 _ |u https://juser.fz-juelich.de/record/153892/files/FZJ-2014-03363.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153892
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142357
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21