000153895 001__ 153895
000153895 005__ 20141113141121.0
000153895 0247_ $$2I:(DE-Juel1)IEK-1-20101013$$aG:(DE-Juel1)SOFC-20140602$$dSOFC-20140602
000153895 035__ $$aG:(DE-Juel1)SOFC-20140602
000153895 150__ $$aSolid Oxide Fuel Cell$$y2000 -
000153895 371__ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.
000153895 371__ $$0P:(DE-Juel1)129828$$aBlum, Ludger
000153895 372__ $$aSOFC$$s2000-01-01
000153895 450__ $$aSOFC$$wd$$y2000 -
000153895 450__ $$aSolid Oxide Fuel Cell$$ieng$$wr
000153895 450__ $$aFestoxidbrennstoffzelle$$iger$$wr
000153895 450__ $$aBrennstoffzelle
000153895 450__ $$aPBZ
000153895 450__ $$aProjekt Brennstoffzelle
000153895 5101_ $$0I:(DE-588b)5008462-8$$aForschungszentrum Jülich GmbH
000153895 680__ $$aThe solid oxide fuel cell (SOFC) promises the highest efficiency of all types of fuel cells because of the high operating temperature. The electrolyte in the SOFC is a solid ionic conductor. Most often used are oxygen ion-conducting oxides of zirconium and yttrium or at lower temperatures also from cerium and gadolinium. The two electrodes are metals or oxides, but these are purely electronic conductors, or may have a mixed conductivity (ionic and electronic). In addition to oxygen-ion conducting electrolytes also proton-conducting solids are used as electrolyte. The basic investigations are dealing with the kinetics and mechanisms of the electrochemical reactions; oxygen reduction at the cathode and hydrogen oxidation at the anode.
000153895 8564_ $$uhttp://www.fz-juelich.de/iek/iek-9/EN/Forschung/Fuel_Cell/Fuel_Cell_node.html$$ySOFC Group @ Jülich
000153895 909CO $$ooai:juser.fz-juelich.de:153895$$pauthority$$pauthority:GRANT
000153895 980__ $$aG
000153895 980__ $$aAUTHORITY