000153901 001__ 153901
000153901 005__ 20240712100827.0
000153901 0247_ $$2doi$$a10.5194/amt-7-1487-2014
000153901 0247_ $$2ISSN$$a1867-1381
000153901 0247_ $$2ISSN$$a1867-8548
000153901 0247_ $$2Handle$$a2128/6755
000153901 0247_ $$2WOS$$aWOS:000336740700021
000153901 037__ $$aFZJ-2014-03370
000153901 082__ $$a550
000153901 1001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b0$$eCorresponding Author$$ufzj
000153901 245__ $$aVolcanic ash detection with infrared limb sounding: MIPAS observations and radiative transfer simulations
000153901 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2014
000153901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s153901
000153901 3367_ $$2DataCite$$aOutput Types/Journal article
000153901 3367_ $$00$$2EndNote$$aJournal Article
000153901 3367_ $$2BibTeX$$aARTICLE
000153901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153901 3367_ $$2DRIVER$$aarticle
000153901 520__ $$aSmall volcanic ash particles have long residence times in the troposphere and the stratosphere so that they have significant impact on the Earth's radiative budget and consequently affect climate. For global long-term observations of volcanic aerosol, infrared limb measurements provide excellent coverage, sensitivity to thin aerosol layers, and altitude information. The optical properties of volcanic ash and ice particles, derived from micro-physical properties, have opposing spectral gradients between 700 and 960 cm−1 for small particle sizes. Radiative transfer simulations that account for single scattering showed that the opposing spectral gradients directly transfer to infrared limb spectra. Indeed, we found the characteristic spectral signature, expected for volcanic ash, in measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) after the eruption of the Chilean volcano Puyehue-Cordón Caulle in June 2011. From these measurements we derived an ash detection threshold function. The empirical ash detection threshold was confirmed in an extensive simulations study covering a wide range of atmospheric conditions, particle sizes and particle concentrations for ice, volcanic ash and sulfate aerosol. From the simulations we derived the upper detectable effective radius of 3.5 μm and the detectable extinction coefficient range of 5 × 10−3 to 1 × 10−1 km−1. We also showed that this method is only sensitive to volcanic ash particles, but not to volcanic sulfate aerosol. This volcanic ash detection method for infrared limb measurements is a fast and reliable method and provides complementary information to existing satellite aerosol products.
000153901 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000153901 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153901 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b1
000153901 7001_ $$0P:(DE-Juel1)129154$$aSpang, R.$$b2
000153901 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b3
000153901 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-7-1487-2014$$gVol. 7, no. 5, p. 1487 - 1507$$n5$$p1487 - 1507$$tAtmospheric measurement techniques$$v7$$x1867-8548$$y2014
000153901 8564_ $$uhttp://www.atmos-meas-tech.net/7/1487/2014/amt-7-1487-2014.html
000153901 8564_ $$uhttps://juser.fz-juelich.de/record/153901/files/FZJ-2014-03370.pdf$$yOpenAccess$$zPublished final document.
000153901 8564_ $$uhttps://juser.fz-juelich.de/record/153901/files/FZJ-2014-03370.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000153901 8564_ $$uhttps://juser.fz-juelich.de/record/153901/files/FZJ-2014-03370.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000153901 8564_ $$uhttps://juser.fz-juelich.de/record/153901/files/FZJ-2014-03370.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000153901 909CO $$ooai:juser.fz-juelich.de:153901$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000153901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153901 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000153901 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000153901 9141_ $$y2014
000153901 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000153901 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153901 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000153901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153901 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000153901 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000153901 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000153901 9801_ $$aFullTexts
000153901 980__ $$ajournal
000153901 980__ $$aUNRESTRICTED
000153901 980__ $$aFullTexts
000153901 980__ $$aI:(DE-Juel1)JSC-20090406
000153901 980__ $$aI:(DE-Juel1)IEK-7-20101013
000153901 980__ $$aVDB
000153901 981__ $$aI:(DE-Juel1)ICE-4-20101013
000153901 981__ $$aI:(DE-Juel1)IEK-7-20101013