001     153953
005     20210129213818.0
024 7 _ |a 10.1007/s00035-014-0126-y
|2 doi
024 7 _ |a 1664-2201
|2 ISSN
024 7 _ |a 1664-221X
|2 ISSN
024 7 _ |a WOS:000334595600007
|2 wos
037 _ _ |a FZJ-2014-03393
082 _ _ |a 500
100 1 _ |a Vásquez, Ekatherina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes
260 _ _ |a Berlin
|c 2014
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1401952252_21135
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Polylepis woodland occurs in Peru’s tropical highlands at elevations between 3,500 and 5,000 m above sea level and Polylepis is the most common tree at timberline in South America. The objective of this study was to assess the total ecosystem carbon stock in a Polylepis incana woodland, i.e., aboveground biomass (canopy trees and understory), root biomass and soil carbon stocks were all quantified. As part of this study, an allometric equation for the quantification of the aboveground biomass of individual P. incana trees was developed for the first time. The most important carbon pool was the soil (39.7 ± 6.9 kg m−2) followed by the aboveground biomass of Polylepis trees (3.8 ± 0.7 kg m−2). The total ecosystem carbon stock was estimated to be 43.9 ± 7.6 kg m−2; thus, 90.6 % of the ecosystem carbon stock is soil carbon
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Ladd, Brenton
|0 P:(DE-HGF)0
|b 1
|e Corresponding Author
700 1 _ |a Borchard, Nils
|0 P:(DE-Juel1)145704
|b 2
773 _ _ |a 10.1007/s00035-014-0126-y
|g Vol. 124, no. 1, p. 71 - 75
|0 PERI:(DE-600)2600962-6
|n 1
|p 71 - 75
|t Alpine botany
|v 124
|y 2014
|x 1664-221X
856 4 _ |u https://juser.fz-juelich.de/record/153953/files/FZJ-2014-03393.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153953
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145704
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21