001     153955
005     20220930130029.0
024 7 _ |a 10.1002/2013WR013725
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a WOS:000333563900044
|2 wos
024 7 _ |a 2128/6758
|2 Handle
037 _ _ |a FZJ-2014-03395
082 _ _ |a 550
100 1 _ |a Maxwell, Reed M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks
260 _ _ |a Washington, DC
|c 2014
|b AGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 153955
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a There are a growing number of large-scale, complex hydrologic models that are capable of simulating integrated surface and subsurface flow. Many are coupled to land-surface energy balance models, biogeochemical and ecological process models, and atmospheric models. Although they are being increasingly applied for hydrologic prediction and environmental understanding, very little formal verification and/or benchmarking of these models has been performed. Here we present the results of an intercomparison study of seven coupled surface-subsurface models based on a series of benchmark problems. All the models simultaneously solve adapted forms of the Richards and shallow water equations, based on fully 3-D or mixed (1-D vadose zone and 2-D groundwater) formulations for subsurface flow and 1-D (rill flow) or 2-D (sheet flow) conceptualizations for surface routing. A range of approaches is used for the solution of the coupled equations, including global implicit, sequential iterative, and asynchronous linking, and various strategies are used to enforce flux and pressure continuity at the surface-subsurface interface. The simulation results show good agreement for the simpler test cases, while the more complicated test cases bring out some of the differences in physical process representations and numerical solution approaches between the models. Benchmarks with more traditional runoff generating mechanisms, such as excess infiltration and saturation, demonstrate more agreement between models, while benchmarks with heterogeneity and complex water table dynamics highlight differences in model formulation. In general, all the models demonstrate the same qualitative behavior, thus building confidence in their use for hydrologic applications.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Putti, Mario
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meyerhoff, Steven
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Delfs, Jens-Olaf
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ferguson, Ian M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ivanov, Valeriy
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kim, Jongho
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kolditz, Olaf
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 8
|u fzj
700 1 _ |a Kumar, Mukesh
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lopez, Sonya
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Niu, Jie
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Paniconi, Claudio
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Park, Young-Jin
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Phanikumar, Mantha S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Shen, Chaopeng
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Sudicky, Edward A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sulis, Mauro
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1002/2013WR013725
|g Vol. 50, no. 2, p. 1531 - 1549
|0 PERI:(DE-600)2029553-4
|n 2
|p 1531 - 1549
|t Water resources research
|v 50
|y 2014
|x 0043-1397
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/153955/files/FZJ-2014-03395.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/153955/files/FZJ-2014-03395.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/153955/files/FZJ-2014-03395.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/153955/files/FZJ-2014-03395.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:153955
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)151405
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a VDB
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21