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1 Introduction 

1.1 EURISOL Design Study and SAFERIB 

The EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) 

project is aimed at the design - and eventual construction - of the "next-generation" 

European ISOL radioactive ion beam (RIB) facility. 

The EURISOL Design Study (EURISOL DS) is a project funded by the EUROPEAN COM-

MUNITY (chap. 8) within the 6th Framework Programme as a Research Infrastruc-

tures Action under the "Structuring the European Research Area Specific Pro-

gramme". The Project started officially on 1st February 2005, for the duration of 4 

years. The EURISOL design study produced detailed engineering-oriented studies and 

technical prototyping work for the next-generation ISOL Radioactive Ion Beam (RIB) 

facility in Europe. 

Twenty institutes and laboratories within Europe had offered to take part in the de-

sign study as full participants, with an additional 20 institutions – in Europe, North 

America and Asia – collaborating as contributors.  

The work of EURISOL DS was divided into 12 tasks: 

• Task 1: Management 

• Task 2: Multi-MW target sta-

tion 

• Task 3: Direct (100-kW) target 

• Task 4: Fission target 

• Task 5: Safety & radioprotec-

tion 

• Task 6: Heavy-ion accelerator 

• Task 7: Proton accelerator 

• Task 8: Superconducting cavity develop-

ment 

• Task 9: Beam Preparation 

• Task 10: Physics and instrumentation 

• Task 11: Beam intensity calculations 

• Task 12: Beta-beam aspects 

 

Task 5 of the project was "Safety and Radioprotection". Within this task work on ac-

tivity generation and transport, shielding, decommissioning, and legislation were per-

formed. Here, activation of soil and groundwater and activity transport in ground wa-
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ter was studied, in close cooperation with the project SAFERIB (safety of radioactive 

ion beam facilities) which was also funded by EU’s Framework Programme. 

1.2 Accelerators/ion beam facilities and groundwater 

Accelerators/ion beam facilities are widely used instruments using  particles such as 

protons which are "fired" on a specific target after passing the accelerator. 

Before operation and even before starting the construction of a high-energy accelera-

tor a complex licensing procedure has to be performed which addresses also safety 

issues. Part of the licensing documents is usually a safety analysis report (SAR). Within 

this report possible impacts on humans and the environment have to be estimated.  

Depending on their energy, particles like protons and neutrons can activate sub-

stances in the soil, shielding and groundwater such as organic carbon, chemical com-

pounds and ions which are present in the subsurface and the soil/groundwater close 

to the sources of radiation, e.g. an accelerator or a target station (Figure 1-1). 

 

 

Figure 1-1: Schematic drawing of the shielding of an accelerator (Moormann et al., 

2003) 

 

As part of the licensing procedure it has to be shown that any radiation coming from 

an accelerator does not exceed the limits given by the relevant regulations. Direct 
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radiation from e. g. a beam or a target station can be routinely modeled resulting in 

dose rates. Figure 1-2 shows calculated dose rates for a planned linac. 

For the transfer of radionuclides in the groundwater this proof can be demonstrated 

by the application of a computer based transport model (Heuel-Fabianek et al., 

2003). This modeling is relevant to all sites where radionuclides can reach the 

groundwater by both direct activation within an aquifer (saturated flow conditions) 

and transport by infiltrating surface waters (unsaturated flow conditions).  

The understanding of the transport and fate of radionuclides in the subsurface is of 

major importance for the setup of groundwater / transport model and the interpreta-

tion of the related results (output). For this purpose the partition (or distribution) 

coefficient Kd estimates the migration potential of a specific contaminant in aqueous 

solution in contact to solid phases. 

 

 

Figure 1-2: Minimum soil profile (broken line) and real soil profile (solid curve) for 

the high-energy part of a planned linac and calculated dose rates 

(Moormann et al., 2003) 
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This approach can be used not only for radionuclides entering the groundwater “reg-

ularly” as part of a permitted use of ionizing radiation but also if radionuclides enter 

the environment by other processes, e. g. uranium mining activities, nuclear acci-

dents or even assaults with radiological dispersal devices (RDD). 

Due to a great variety of parameters influencing the migration of contami-

nants/radionuclide (Figure 1-3), e.g. kind of clay minerals, suspended solids, interac-

tion between contaminants, sorption/desorption processes, bacterial activity, physi-

co-chemical properties of groundwater, decay of contaminants the use of Kd values in 

transport modeling is always a simplifying estimation. Szermerski (2010) clearly 

showed advantages and disadvantages of using Kd in models. 

 

aqueous 
radionuclide 
species

sorption/
desorption

transport decay

minerals /
soil particles /

rock

precipitation/
dissolution

diffusion

 

Figure 1-3: Transport and fate of radionuclides in groundwater 

 

For a sophisticated modeling it is preferable to determine Kd values for the specific 

soil and the contaminants of concern by laboratory methods (e.g. batch methods, 
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flow-through methods) or, even better, in the field. Unfortunately these activities are 

very time and resources consuming.  

Often the values of the above mentioned parameters greatly vary in the area of con-

cern. In this case results from laboratory and field methods characterize just spots in 

a three-dimensional aquifer and do not represent the total volume. 

A typical result of modeling the transfer of radionuclides in the groundwater at a spe-

cific site is shown in Figure 1-4.  

 

 

Figure 1-4: Resultant activity concentration plume of 3H under an accelerator with 

continuous contamination after steady-state conditions occur (Pro-

lingheuer et al. 2009) 

 

For reasonable results during a screening process it is often more effective to use Kd 

values from the literature and estimate critically their applicability for the specific 

task. Some reports are citing Kd values collected from many sources including esti-

mated values found in numerous publications (chapter 1.6) to give an overview about 

Kd values relevant for specific modeling purposes, e.g. IAEA (1994), Thibault, D.H. et 

al. (1990), U.S. EPA (1999b, 2004, 2005). 
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This report is also a collection of Kd values for radionuclides. The radionuclides were 

selected with respect to transport process in groundwater at (potential) accelerators 

sites.  

Kd-data and information regarding geochemical behavior of radionuclides relevant in 

other processes such as nuclear accidents or assaults can be found in the cited litera-

ture (chap. 7), e. g. United States Environmental Protection Agency (1999b; cadmium, 

cesium, plutonium, radon, uranium etc.) and Pacific Northwest National Laboratory 

(2003; americium, cesium, iodine, uranium, plutonium etc.). 

A “conservative” approach during the process of using “collected” Kd values, which 

results in a potential worst-case concentration, will increase the acceptance of the 

results especially if regulatory limits for the protection of humans or the environment 

have to be reached. 
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2 Relevant isotopes 

For the derivation of the Kd values it is necessary to analyze the chemical constituents 

of the groundwater which can be activated if passing an area where the groundwater 

is exposed to thermal neutrons and protons. In addition, activated elements can en-

ter an aquifer after “production” in the shield (concrete, soil etc.) or surrounding soil 

of an accelerator if these elements can be mobilized e.g. by infiltrating surface water 

or by direct contact of shield and groundwater. Additionally, water itself should be 

taken into account before starting activation calculations (Schlögl et al., 2007). 

Diffusion of activated elements from soil particles or mineral phases into the ground 

water within the aquifer or the soil moisture in the vadose zone can, in most cases, 

be ignored because the water is usually in equilibrium with the local soil. Therefore, 

natural occurring radioactive constituents of the soil or soil particles are not relevant 

because they can be estimated as immobile or fixed (Brock, 1978). 

Table 2-1: Constituents of the groundwater of the shallow aquifer upstream a pro-

posed site southeast of Forschungszentrum Jülich, Germany 

parameter concentration# unit parameter concentration # unit 

Oxygen ° 14,1 mg/l K # 2,67 mg/l 

Nitrite-N ° 0,01 mg/l Na # 17,10 mg/l 

Nitrate-N ° 61,2 mg/l Ca # 137,0 mg/l 

Chloride ° 87,2 mg/l Mn # 20,6 mg/l 

Sulfate ° 151,0 mg/l Fe # 417,0 mg/l 

   As # 0,35 µg/l 

   Ba # 16,70 µg/l 

   Co # 0,17 µg/l 

   Cr # 3,70 µg/l 

   Cu # 5,62 µg/l 

   Mo # 0,022 µg/l 

   Ni # 5,38 µg/l 

   Pb # 0,41 µg/l 
#  average values from 2 analysis of wells I 
and II, February 2006 

Rb # 0,18 µg/l 

Tl # 0,0015 µg/l 
°  values from analysis of well I, November 
2005 

U # 1,29 µg/l 

Zn # 25,30 µg/l 
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An example for the constituents of groundwater beneath a potential accelerator site 

is shown in Table 2-1. The data of Table 2-1 are from a sample taken at the shallow 

wells I and II (total depth: 20 m) of the Forschungszentrum Jülich, Germany. These 

wells are upstream a potential accelerator site (Mank et al., 2003). 

Table 2-2 shows an example for the radionuclides which has been evaluated as im-

portant as input for a specific application of a transport model.  

The radionuclides of Table 2-2 were selected in accordance with a safety report for a 

licensing procedure for an accelerator (COSY) at the Research Center Jülich (Probst, 

1992). 

 

Table 2-2: Relevant radionuclides for groundwater modeling for the COSY facility 

at Forschungszentrum Jülich (Probst, 1992) 

radionuclide radionuclide 
3H 48Sc 
7Be 32Si 
22Na 32P 
35S 33P 
37Ar 44Ti 
39Ar 48V 
42Ar 49V 
45Ca 51Cr 
47Ca 52Mn 
44mSc 54Mn 
46Sc 55Fe 
47Sc 59Fe 

 

Additionally these and other radionuclides “produced” by activation of soil have been 

described as radiological relevant or significant at existing or planned facilities/sites, 

e.g.: 

• 3H, 22Na; Superconducting Super Collider Laboratory SSCL, Waxahachie/Texas, 

USA (Romero, V. et a., 1994, Baker, S. et al.,1994) 

• 3H, 7Be, 22Na, 24Na, 45Ca, 54Mn, 55Fe; Next Linear Collider NLC, USA (Rokni, S., 

2000) 
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• 3H, 22Na; Linac Coherent Light Source LCLS at Stanford Linear Accelerator Cen-

ter SLAC, USA (Mao, X.S. et al., 2006) 

• 3H, 22Na, 54Mn, 60Co, 152Eu; High Energy Accelerator Research Organization KEK, 

Japan (Miura, T. et al., 2005) 

• 7Be, 22Na, 24Na, 35S, 37Ar, 45Ca, 51Cr, 52Mn, 54Mn, 56Mn, 55Fe, 60Co, 152Eu; Proton 

Accelerator Facility of PEFP, Korea (An, S.H. et al., 2007) 

• 3H, 7Be, 14C, 22Na, 26Al, 36Cl, 40K, 55Fe; “large neutron sources”, considering only 

those radionuclides with a half-life greater than 10 hours (Schlögl, B. et al., 

2007) 

Depending on their half-life and the partition coefficient Prolingheuer et al. (2006) set 

up a matrix of radionuclides relevant in soil typical at Forschungszentrum Jülich site 

(Figure 2-1). Most relevant for dose calculations are those radionuclides with a long 

half-life and a low Kd-value. Therefore, a main focus should be on 
36Cl, 3H, 60Co, and 

14C. 

 

 

Figure 2-1:  Matrix of radionuclides relevant in Jülich soil (half-life, Kd-value, satura-

tion concentration below 0.8 m concrete shielding for a loss of 1 W/m) 

(Prolingheuer, N. et al, 2006) 
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Miura et al. (2005) showed results of measurements of radionuclides under a 12 GeV 

proton accelerator facility at the High Energy Accelerator Research Organization (KEK) 

(Figure 2-2). 

The measured radionuclides were induced by activation. The groundwater table was 

at a depth of 1 m. Thus, the radionuclides under the groundwater table could be di-

rectly transported depending on their geochemical behavior in the specific aquifer. 

 

 

Figure 2-2: Vertical profiles of radionuclides in the soil around a beam line at KEK, 

Japan (Miura et al., 2005) 
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3 Partition coefficient Kd - background 

3.1 Definition 

Kd was first introduced by Mayer and Tompkins (1947) based on activities in the Unit-

ed States related to the separation of elements which are products of uranium fission 

in ion exchange columns. 

The Partition coefficient is defined as the concentration of solute in the adsorbed 

phase (mass of solute per unit mass of soil) divided by the concentration of the solute 

in the solution phase (mass of solute per unit volume of soil pore water). The units 

for Kd are usually given as mL/g (see Equation 3-1).  

M

V

C

C
Kd 








−= 1
0

 
Equation 3-1 

where C0 is tracer concentration in the solution before adding the soil, C is the solute 

concentration in the liquid phase of a soil water suspension, V is the volume of water, 

and M is the mass of soil. 

Thus, Kd is a factor related to the partitioning of a solute (or contaminant) between 

the solid and the aqueous phases. 

3.2 Assumptions and limitations 

The sorption from the solid to the aqueous phase can be defined as equilibrium-

partitioning process with a linear isotherm at low solute concentrations (e.g. either 

≤ 10-5 molar, or less than half the solubility, whichever is lower (U.S. EPA, 1999a)).  

The derivation of Kd values from thermodynamic data is based on some assumptions: 

• the adsorption of the solute is fully reversible (adsorption rate = desorption rate) 

• the reaction is independent of the concentration of the solute 

• pH and temperature are fixed 

• there is only one type of dissolved species 

• there is only one type of adsorption site 

Kd values which can be used in modeling transport of contaminants can also be de-

rived from field data and observations. These field empiricised Kd values should be 
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used, if available, with a critical review of the soil specific parameters which influence 

sorption processes. A method for estimating Kd values is described in chapter 1.6. 

Using Kd values ignores the knowledge of the complex adsorption process itself. More 

advanced models of the surface complexation in a soil / solution system, such as the 

so-called double or triple layer models, are based on electrostatic attraction between 

the metal in solution and the particle surface. These theories have been applied suc-

cessfully to ideal laboratory systems (Albrecht, 1998).  

Crawford et al. (2006) summarizes uncertainties in the acquisition and use of Kd data 

at different levels: 

• Uncertainty in the recommended Kd data itself  

This includes sources of random error, mineralogical variability of rock sam-

ples, subtle differences in water chemistry, methodological flaws in measure-

ment and interpretation, documentation flaws, as well as sources of systemat-

ic bias (“frame shift” and “frame dilation”). 

• Uncertainty related to the use of generic data in site-specific safety assess-

ment (SA) 

Application conditions may not exactly match the conditions under which the 

experimental data have been obtained. This could potentially include both dif-

ferences in water chemistry as well as the use of generic data for rock types 

where site-specific data is unavailable. 

• Uncertainty in the application conditions   

It is not possible to know the actual flow paths and rock types that a water 

package encounters while flowing through fractured rock and consequently, 

the material properties averaged over a representative volume (block) is un-

certain. In addition, the future state of relevant geochemical parameters may 

not be accurately known owing to transient flow effects that have not been 

well characterized. 

However, more complex models addressing these uncertainties are often not appli-

cable due to the difficulties in getting reliable values for relevant parameters, e.g. 

surface complexation constants. Therefore the simplifying Kd concept is still in use if 

the transport of inorganic contaminants has to be modeled. 
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3.3 Methods for measuring Kd 

Laboratory batch studies are most common for determining Kd values. The principle is 

adding a known volume of an aqueous contaminant solution at known concentration 

to a soil of known mass. After mixing and completed sorption the remaining concen-

tration of the contaminant in the solution is measured. 

In-situ Kd values can be gained out of core samples from an aquifer of a specific site. 

The aqueous phase is separated from the solid phase and then analyzed for the so-

lute concentration. The solid is also analyzed for the contaminant(s) of concern. This 

in-situ batch method (U.S. EPA, 1999a) results in more site specific Kd values. 

A column of packed soil can be infiltrated by a solution containing known concentra-

tion of the contaminant. This laboratory column (flow-through) method produces 

data of concentrations of a contaminant in the effluent of the column as a function of 

time. The analysis of the residence time of the contaminant followed by the calcula-

tion of a retardation factor results in a calculated soil specific Kd value. 

Site specific Kd values can be derived by the use of transport models and existing 

groundwater monitoring data for the contaminant of concern (field modeling meth-

od).  

3.4 Methods for estimating Kd 

Even among soils with greatly different characteristics a significant relationship 

among retention parameters (e.g. Kd) and soil and element properties exist (Buchter 

et al., 1989). If this relationship can be quantified, an estimation of Kd is possible.  

 

[ ])(ln56.062.4ln CRstexKd −+=  Equation 3-2 

where,   

if soil = sand (≥70 % sand-sized particles) ⇒ stex = -2.51 

if soil = loam (even distribution of sand, silt, clay;  

 ≤ 80 % silt sized particles) ⇒ stex = -1.26 

if soil = clay (≥ 35 % clay-sized particles)  ⇒ stex = -0.84 

if soil = organic (≥ 30 organic matter)  ⇒ stex = 0 

 

Baes (1984) developed a method to predict Kd values based on the bioavailability. The 

so-called “soil-to-plant concentration ratio” (CR, Table 3-1), which is an indicator for 
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the bioavailability, shows a strong negative correlation to Kd values (Equation 3-2, 

Thibault et al. (1990)). 

Table 3-1: Concentration ratio (CR) values (wet weight basis) used for estimation 

of Kd values 

Element CR Element CR 

Ag 1,0 * 10-1 Hg 2,3 * 10-1 

Au 1,0 * 10-1 Mn 6.3 * 10-2 

Be 2.5 * 10-4 Na 1,9 * 10-2 

C 1.4 * 10-0 P 8.7 * 10-1 

Ca 8.8 * 10-1 S 3,8 * 10-1 

Co 5.0 * 10-3 Sc 1,5 * 10-3 

Cr 1.9 * 10-3 Si 8.8 * 10-2 

Cu 1,0 * 10-1 Sr 6,3 * 10-1 

Eu 2,5 * 10-3 Ti 1,4 * 10-3 

Fe 1.0 * 10-3 V 1,4 * 10-3 

H 1.2 * 10-0   

CR values derived from Baes et al. (1984) divided by 4 
to get CR on a wet weight basis (Thibault et al., 1990) 
 

An estimation of Kd values can also be based on a study of the specific literature. If 

the Kd values found for a specific contaminant can be related to soil types they can be 

used for obtaining a bandwidth for Kd. Preferable are Kd values which are based on 

monitored or calculated migration in the field (see chapter 1.5). 

3.5 Variations of Kd values 

The partition coefficient Kd for a specific contaminant can extend over a very wide 

range even for a single type of soil. Therefore the determination of Kd values has ma-

jor importance for modeling and has to take the soil mechanical and mineralogical 

parameters for a layer of a computer model into account. 

Deriving Kd values from on-site data will result in a bandwidth of realistic values. 

These variations of Kd with respect to a specific contaminant are based on soil specific 

parameters, hydraulic conditions, physical and chemical properties of the groundwa-

ter and the applied monitoring procedures or calculations. During the study of such 

data from literature these issues have to be addressed and should be evaluated care-

fully before using the respective Kd for a planned modeling process. 
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Some reports are just citing Kd collected from many sources including estimated val-

ues found in numerous publications (chapter 1.6) to give an overview about Kd values 

relevant for specific modeling purposes, e. g. U.S EPA (1999b, 2004, 2005), IAEA 

(1994). 

3.6 Kd in computer modeling 

The solute migration in soil and unconsolidated geological material can be described 

and predicted by computer models. These models are widely used and are more or 

less complex depending on the purpose of the user and the hardware/software avail-

able. 

The model must predict the time of arrival of a contaminant at the appropriate loca-

tion and the magnitude of the concentration. The location has to be defined by the 

user of the model, whereas migration time and magnitude/concentration are influ-

enced by the specific Kd values. 

A partial differential equations for solute transport (Istok, 1989) used in computer 

models is shown in Equation 3-3. 

( ) ( ) ( ) ( )

( ) ( ) ( )CKCCK
t

Cv
x

C
z

DC
y

DC
x

DC

dbdbx

zyx

ρλρ +Θ−
∂

∂
−

∂

∂
−

Θ
∂

∂
+Θ

∂

∂
+Θ

∂

∂
=Θ∂

²

²

²

²

²

²

 

Equation 3-3 

where C is solute concentration, Dx, Dy, Dz are dispersion coefficients, Θ is the volu-

metric water content, vx is apparent groundwater velocity in the x coordinate direc-

tion, ρ is bulk density, Kd is the equilibrium partition coefficient for a particular sorp-

tion/desorption reaction involving the solute and the porous media, and λ is the so-

lute decay coefficient. 

Diffusion processes have no significant influence even at very low hydraulic conduc-

tivities (kf in the order of 10
-9 to 10-10 m/s) at difference in concentration of 2.200 

mg/l for common cations like Na+, K+, Ca2+ (Heuel, 1991). Moreover, the relevance of 

diffusion driven migration will decrease at lower differences in concentration and 

greater permeability.  

In absence of Kd values based on site-specific observations Kd values from the litera-

ture can be selected for groundwater modeling. These values should come from ob-

servations or calculations under similar conditions as existing at the site of concern. 

 



KD-REPORT CHAP. 3  

   16 

The influence of solid and aqueous phase components (e.g. organic matter, coating of 

soil particles, dissolved carbonate, clay concentrations, Eh) on the sorption of a spe-

cific contaminant should be estimated if these data are available before using Kd val-

ues from the literature in transport models. 
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4 Partition coefficients Kd of selected elements in groundwater 

4.1 Background 

The partition coefficient of a specific element varies e.g. with respect to the soil type, 

the pH of the groundwater and the concentrations of other elements. 

The following subchapters are partly referring to a publication by Thibault et al. 

(1990) and Sheppard et al. (1990). This publication divided the different soil textures 

in 4 groups; a way to handle the great variability of soil textures, mineralogical com-

position and chemical constituents by reducing characterizing parameters to particle 

size distribution and organic content:  

• sand soils: ≥ 70 % sand sized particles 

• clay soils: ≥ 35 % clay-sized 

• loam: ≤ 80 % silt-sized particle or even distribution of sand-, clay- and 

silt-sized particles 

• organic soil: > 30 % organic matter 

This grouping is the most practicable way of addressing soil specific parameters which 

influence the specific Kd because many publications of empiricised Kd values refer to 

this major soil types. 

However, Kd values depend on more parameters than just the grain size distribution. 

Thus, the following subchapters will also include a short description of some geo-

chemical aspects of the behavior of the specific contaminant which can be used for a 

further interpretation of the Kd values or for adjusting the Kd values to specific site 

conditions. 

Thibault et al (1990) and Sheppard et al. (1990) compiled their data from literature. 

Where no data exists in the literature they used the soil-to-plant concentration ratio 

to predict Kd. 

4.2 Geochemical aspects 

As described above radioisotopes can enter an aquifer after the process of activation 

in the shield (concrete, soil etc.) or surrounding soil/rock of an accelerator assuming 
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that these elements can be mobilized by infiltrating surface water or by direct contact 

of shield and groundwater. 

To give at least a first impression of the geochemical behaviour of a specific element 

or its species after entering an aquifer some Eh-pH-diagrams are given in the follow-

ing. Eh-pH-diagrams visualize the influence of the reduction potential (Eh) and the pH 

on the stability of a specific mineral, soluble species and gas in an aqueous electro-

chemical system such as groundwater. A predominant ion boundary is represented 

by a line. Most lines are straight and are functions of pH alone (vertical lines), Eh 

alone (horizontal lines) or both (sloped lines). Details about the background and the 

use of Eh-pH diagrams are given by Brookins (1988) and Takeno (2005). 

4.3 Beryllium 

Beryllium occurs in aquatic systems usually as Be2+ and solid BeO (Bromellite) strongly 

depending on pH, whereas BeO dissolves under acidic to near neutral condition to 

form Be2+ (Figure 4-1).  

 

Figure 4-1: Eh-pH diagrams of the system Be-O-H. Assumed activities for dissolved 

Be=10-6, -4 (Brookins, 1988) 
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Yet, beryllium is known to be quite insoluble in nature (Brookins, 1988). Therefore Be 

is expected to have relatively high Kd values. 

Empiric Kd values were not found in the cited literature (chapter 7). Thus an estima-

tion is made (see chapter 1.6) based on the bioavailability of Be resulting in values 

given in Table 4-1. 

Table 4-1: Beryllium - Kd values based on concentration ratio (CR) values derived 

from Baes et al. (1984) 

soil texture sand silt clay organic 

Kd [L/kg] 250 800 1.300 3.000 

derived from Baes et al. (1984) by using the soil characterization described above 

 

4.4 Calcium 

In general the stability fields of calcium species depend on pH and are not sensitive to 

the redox potential (Figure 4-2).  

 

Figure 4-2: Eh-pH diagrams of the system Ca-C-O-H-S. Assumed activities for dis-

solved species Ca=10-2.5, S=10 -3, C=10-3 (Brookins, 1988) 
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Most common species are calcite (CaCO3) and gypsum (Ca SO4·2H2O) which can be 

formed due to water incorporation out of anhydrite (CaSO4).  

Anhydrite can only be stable with respect to gypsum under specific conditions (excess 

of sodium or potassium chloride). Usually it is altered to gypsum by absorption of wa-

ter. 

Table 4-2: Calcium - Kd values based on concentration ratio (CR) values (Sheppard, 

M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay Organic 

Kd [L/kg] 5 30 50 90 

 

4.5 Carbon 

In natural environments carbon exists in numerous species.  

 

Figure 4-3: Eh-pH diagrams of the system C-O-H. Assumed activities for dissolved 

C=10-3 (Brookins, 1988) 
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However, under oxidizing conditions H2CO3 (carbonic acid), HCO3
-1 and CO3

2- (with 

increasing pH) are mostly the dominant species in common groundwater depending 

on the pH value as shown in an Eh-pH-diagram (Figure 4-3). 

Sorption of C is generally low, but appeared to increase with increasing calcium con-

tend of the solid (Allard et al., 1981).  

Due to the lack of information with respect to Kd values of carbon a conservative re-

tardation factor or a Kd of 0 L/kg is recommended by Sheppard et al. (1984). Howev-

er, Thibault et al. (1990) showed Kd values based on concentration ratio (CR) values 

and from literature (Table 4-3). 

Table 4-3: Carbon - Kd values based on concentration ratio (CR) values for silt and 

clay and from literature for sand (Thibault et al., 1990). 

soil texture sand silt clay Organic 

Kd [L/kg] 5 20 1 70 

 

4.6 Chlorine 

Chlorides (e.g. halite (NaCL) or sylvite (KCl)) easily dissociates in groundwater to form 

chloride (Cl-). Cl- is the stable species of chlorine in Eh-pH diagrams within the stability 

field of groundwater (Figure 4-4). 

Chloride as anion has a negative charge. Most silicate surfaces onto which chloride 

could adsorb are negative. Due to their own negative charge, chloride ions do not 

adsorb onto these silicate surfaces and therefore move at approximately the same 

rate as the groundwater (Bentley, H.W. et al., 1986).  

However, Sheppard et al. (2006) stated that even a very modest degree of sorption in 

soil could markedly change the dose estimates, e.g. a very low Kd of 0.1 L/kg could 

result in a near doubling of the steady-state soil 36Cl concentrations. Therefore, a re-

tardation of chloride ions in a groundwater system can be assumed at a very low lev-

el.  

Sheppard et al. (1996) and Zach et al. (1996) derived Kd values for Cl from a regres-

sion across many elements, with plant/soil concentration ratios as the independent 

variable (Table 4-4). 
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Figure 4-4: Eh-pH diagrams of the system Cl-O-H. Σ Cl = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 

 

Table 4-4: Chlorine - Kd values (Sheppard et al. (1996), Zach et al. (1996)). 

soil texture sand silt clay Organic 

Kd [L/kg] 0.8 0.25 4.4 11 

 

4.7 Chromium 

The adsorption behavior of chromium is influenced by a variety of chemical and phys-

ico-chemical factors (Brookins (1988), U.S. EPA (1999b)). These factors can be sum-

marized as follows: 

• Concentrations of Cr(III) in soil solutions are typically controlled by dissolution/ 

precipitation reactions; therefore, adsorption reactions are not significant in soil 

Cr(III) chemistry. 

• Above pH 5 chromium is present in its stable form Cr2O3 (or incorporated into 

chromites and other chromian spinels). 
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• pH values above 13.5, where CrO2
- is the dominant chromium species (Figure 4-5), 

is usually not relevant for common types of soil and groundwater. 

• Increased pH decreases adsorption (decrease in Kd) of Cr(IV) on minerals and soils. 

• Eh of the soil affects chromium adsorption. Cr(III) oxidizes to form Cr(VI) as HCrO
4- 

and CrO4
2- ions at high Eh. Ferrous iron associated with iron oxide/hydroxide min-

erals can reduce Cr(VI) which results in precipitation (higher Kd). Lower Kd values 

can be determined if Mn oxides are present resulting in an oxidation of Cr(III) into 

Cr(VI). 

• The presence of competing anions (e.g. HPO4
2-, H2PO4

- >> SO4
2-, CO3

-, Cl-, NO3
-) 

reduce Cr(IV) adsorption. 

• Cr(VI) is readily be reduced to Cr(III) by soil organic matter (Kephalopoulos et al, 1988). 

 

Figure 4-5: Eh-pH diagrams of the system Cr-O-H. Assumed activities of dissolved Cr 

=10−6 (Brookins, 1988) 

 

These data are corresponding to Kephalopoulos et al. (1988) with Kd values from col-

umn experiments for sand (17 L/kg), sandy soil (24 L/kg), sandy loam (123 L/kg). 
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Table 4-5: Chromium(IV) - Kd values (Sheppard, M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay organic 

Kd [L/kg] 70 30 1.500 270 

 

4.8 Cobalt 

The mobility of Co is mostly limited by adsorption and coprecipitation reactions with 

manganese and iron oxide minerals. Under normal geochemical, conditions Co(II) - 

not Co(III) - is the dominant co-oxidation state (see Eh-pH-diagram, Figure 4-6). Un-

complexed Co2+ dominates under oxidizing condition below pH 8 to 9. Because Co 

readily adsorbs to minerals and has a short half-life relative to those of other radio-

nuclides of environmental concern, the mobility of Co should be limited in soil pore 

(Krupka et al., 2002). 

 

Figure 4-6: Eh-pH diagrams for part of the system Co-S-O-H. Assumed activities for 

dissolved species are: Co=10−6, C=10-3, S=10-3 (Brookins, 1988) 
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Table 4-6: Cobald - Kd values (Sheppard, M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay Organic 

Kd [L/kg] 60 1.300 550 1.000 

 

4.9 Copper 

In general, the mobility of copper increases with decreasing pH. Depending on the 

presence of other ions solid copper species are formed under reducing conditions 

and alkaline pH (e.g. native copper, CuO/Cu2O, CuS/Cu2S). 

If C is present cupric carbonates, mostly important malachite (Cu2(OH)2CO3), can be 

formed at medium and higher pH replacing CuO (Brookins, 1988). 

 

 

Figure 4-7: Eh-pH diagrams of the system Cu-O-H. Σ Cu = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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Table 4-7: Copper - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 30 105 159 369 

derived by Equation 3-2 using the soil characterization described above 
 

4.10 Europium 

Europium is one of the rare earth elements (REE). Eu3+ is the most stable oxidation 

state. The abundance of different Eu3+-species strongly depends on the pH of an 

aquatic system. Eu3+ behaves similar to other rare earth elements (e.g. Ce, Y, Lu, Sm, 

Tm) with a 3+ oxidation state. The dominant species at acidic pH values in a ground-

water system is the uncomplexed ion Eu3+. At medium and alkaline pH Eu3+ tends to 

form stable complexes with carbonate, hydroxide, sulfate etc. (Krupka et al., 2002). 

 

 

Figure 4-8: Eh-pH diagrams of the system Eu-O-H. Σ Eu = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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Trivalent elements are considered to be highly sorbed in sediments - i.e., exhibit high 

Kd values - and thus immobile in most environments (EPA, 2004). Eu(III) is considered 

very insoluble in environmental systems. Its low solubility may be a contributing fac-

tor to the large partition coefficient Kd. 

The existence of anionic hydroxide and carbonate species at alkaline pH values 

should result in increased mobility of Eu(III) in the geochemical environment. Such 

mobility however is inconsistent with the observed sorption behaviour of europium 

(Krupka et al., 2002). 

Unlike most other rare earth elements Europium can form an (II+)  species at ex-

tremely reducing conditions and a medium pH (Brookins, 1988). The formed Eu2+ is 

mobile in contrast to trivalent rare earth elements.  

 

Table 4-8: Europium - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 236 825 1.255 2.908 

derived by Equation 3-2 using the soil characterization described above 
 

4.11 Gold 

Native Au is the dominant species under most conditions in natural groundwater 

(Figure 4-9). Only in very acidic and oxidizing environments Ag can be mobilized e.g. 

as AuCl2
-. 

 

Table 4-9: Gold - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 30 105 159 369 

derived by Equation 3-2 using the soil characterization described above 
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Figure 4-9: Eh-pH diagrams of the system Au-O-H. Σ Au = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 

 

4.12 Hydrogen/Tritium 

Tritium (3H or T), being a radioactive isotope of hydrogen, usually migrates as part of 

the compound water at the same velocity as groundwater. Due to its half-life of 12.3 

years tritium is used for age determination of near surface groundwater and for stud-

ies related to hydrological flow conditions. 

Tritium behaves hydrologically like hydrogen (1H) and therefore exists in ionic, gase-

ous and liquid forms. Because free tritium is oxidizing rapidly to form water (3H2O or 
3HHO) its migration and mobility is practically independent of any precipitation or 

sorption processes. For groundwater modeling the migration of tritium is just de-

pending on the input concentration, the velocity of the groundwater flow and the 

half-life of tritium. 

Due to this independence, Kd values for tritium related to specific soil types are given 

only for comparison in this report. Using concentration ratio (CR) values derived by 
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Equation 3-2 Kd values for tritium can be calculated as shown in Table 4-10. If a speci-

fication is necessary for calculation or modeling, the Kd value for tritium is 0. 

Table 4-10: Hydrogen/Tritium - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 7 26 40 92 

derived by Equation 3-2 using the soil characterization described above 
 

4.13 Iron 

The dominant iron species in many natural  groundwaters are Hematite (Fe2O3) and 

Fe2+ whereas Hematite is stable at higher pH and Eh and Fe2+ at lower pH and Eh 

(Figure 4-10). Depending on the concentration of (additional) elements/ions, such as 

C or Si additional iron species (e.g. FeCO3 (C; medium to high pH), Fe(OH)3 (absence of 

S), Fe3O4, FeSiO3 (additional Si), Fe·OH) can be dominant under specific redox condi-

tion and pH.  

 

Figure 4-10: Eh-pH diagrams of the system Fe-O-H. Σ Fe = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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Table 4-11: Iron - Kd values (Sheppard, M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay organic 

Kd [L/kg] 220 800 165 600 

 

4.14 Manganese 

The dominant species of manganese at acidic to medium conditions up to a pH of 10 

(depending on the redox-potential and e.g. the occurrence of S and C) is Mg2+. Above 

this boundary manganese (hydro)oxides (MgO2, MgO, Mn3O4, Mn(OH)2 etc.) and also 

carbonate (MnCO3) can occur. 

Table 4-12: Manganese - Kd values (Sheppard, M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay organic 

Kd [L/kg] 50 750 180 150 

 

 

 

Figure 4-11: Eh-pH diagrams of the system Mn-O-H. Σ Mn = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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4.15 Mercury 

Under a broad range of pH- and redox-condition (neural to higher pH, medium redox 

potential) in groundwater Mercury is stable as native Hg. HgO forms between pH 5.4 

and 10,8 at higher redox (Brookins, 1988). Between pH 5.5 and 2.5 KD values for Hg 

increases. 

Chloride ions are playing an important role with respect to the formation of Hg spe-

cies. In presence of Cl HgCl2-4 and Hg2Cl2 are the dominant species at lower pH and 

higher redox. 

In general organic matter binding Hg plays the dominant role in controlling Hg sorp-

tion onto soil (Lee et al., 2001). 

 

 

Figure 4-12: Eh-pH diagrams of the system Hg-O-H. Σ Hg = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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Table 4-13: Mercury - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 19 66 101 234 

derived by Equation 3-2 using the soil characterization described above 
 

A Kd value of 52 L/kg is given by the Alaska Department of Environmental Conserva-

tion (1999) without further specifying soil type or particle size distribution. This value 

corresponds to the values in Table 4-13 for sand/silt sized particles. 

4.16 Phosphorus 

Phosphorus in groundwater exists mainly as phosphoric acid (H3PO4) at low pH and 

the related dissociation products (H2PO4
- (medium low to medium pH), HPO4

2-

(medium to medium high pH), PO4
3- (very high pH)). Metal phosphates and their ion 

species can occur commonly depending on the concentration of a specific metal cati-

on and the general groundwater conditions (Eh, pH etc.). 

 

 

Figure 4-13: Eh-pH diagrams of the system P-O-H. Σ P = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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Table 4-14: Phosphorus - Kd values based on concentration ratio (CR) values (Shep-

pard, M. I. and Thibault, D. H., 1990). 

soil texture sand Silt clay organic 

Kd [L/kg] 5 25 35 90 

 

4.17 Scandium 

Scandium belonging to the rare-earth metals often follows iron (Fe3+) in natural oc-

curring minerals such as hematite, pyroxene or muscovite. There is a different chemi-

cal behavior of scandium during oxidation-reduction processes where Mn is present 

resulting in Fe-Mn nodules. These nodules show typically a depletion of Sc relative to 

Fe (Aide, 2009).  

The solubility of Sc depends on the pH of the groundwater; there is no Eh depend-

ence. Between the pH range of approx. 4 to 10/11 ScOH2+ is the acidic species, 

whereas Sc(OH)3 is the dominant species at higher pH. 

 

Table 4-15: Scandium - Kd values based on concentration ratio (CR) values 

soil texture sand Silt clay organic 

Kd [L/kg] 315 1.098 1.671 3.871 

derived by Equation 3-2 using the soil characterization described above 
 

Sc2O3 is stable like hematite (Fe2O3, see chap. 1.21) with respect to pH and redox po-

tential. Sc forms no sulfites in natural groundwater. 

4.18 Silicon 

Only one common silicon species exists under natural conditions: silica (SiO2) which is 

extremely insoluble. Only under high pH conditions (above pH 12) silica starts to dis-

solve to form H3SiO4
-. Therefore, Kd values for Si in natural groundwater are higher 

than for more soluble compounds. 

 

Table 4-16: Silicon - Kd values based on concentration ratio (CR) values (Sheppard, 

M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay Organic 

Kd [L/kg] 35 110 180 400 
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Figure 4-14: Eh-pH diagrams of the system Si-O-H. Σ Si = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 

 

4.19 Silver 

Under most natural conditions Ag occurs preferable as native Ag (Figure 4-15). If sul-

fur is present, Ag forms Ag2S at low Eh (reducing conditions). Under strongly oxidizing 

conditions Ag+ or Ag(OH)2
- is dominating or, if Cl is present, AgCl2

- replaces Ag+. Thus, 

dissolved Cl plays a major part on the transport of Ag under oxidizing, acidic condi-

tions (Brookins, 1988). 

 

Table 4-17: Silver - Kd values (Sheppard, M. I. and Thibault, D. H., 1990). 

soil texture sand silt clay organic 

Kd [L/kg] 90 120 180 15.000 
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Figure 4-15: Eh-pH diagrams of the system Ag-O-H. Σ Ag = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 

4.20 Sodium 

Unlike calcium, magnesium and silica sodium is not an essential constituent of many 

common minerals. However, main source of sodium in groundwater is the weather-

ing of sodium bearing minerals, i.e. plagioclase. 

Table 4-18: Sodium - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 76 265 403 934 

derived by Equation 3-2 using the soil characterization described above 
 

In general sodium salts are highly soluble and will not precipitate under common 

concentration in natural ground waters. The only common mechanism of sodium 

(Na+) removal from groundwater is the ion exchange usually driven by the ion ex-

change capacity of the clay minerals in a specific aquifer.  
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4.21 Strontium 

Under mildly acidic to basic pH conditions the dominant strontium species are insolu-

ble SrSO4 or SrCO3 (basic pH). The stability of this strontium species is not depending 

on the Eh of the system as shown in an Eh-pH diagram (Figure 4-16). At intermediate 

to strongly acidic pH Sr2+ can be expected as the dominant species (Brookins, 1988). 

 

Figure 4-16: Eh-pH diagram for part of the system Sr-C-S-O-H. Assumed activities for 

dissolved species are: Sr=10−6,−4, , S=10-3, C=10-3 (Brookins, 1988) 

 

Strontium behaves chemically much like calcium. In the presence of calcium ions 

strontium commonly forms coprecipitates with common calcium minerals such as 

calcite and anhydrite at an increased ph. In the vadose zone or phreatic aquifer 

where CO2 removal occurs (e.g. by weathering) precipitation of calcite is further en-

hanced (Mitchell et al., 2005). Thus, coprecipitation of strontium can be stimulated 

additionally. 

Dissolved strontium is expected to partition to the solid phase at intermediate to 

acidic pH by cation exchange (U.S. EPA, 1999b) and not (co)precipitation. Therefore, 
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the cation exchange capacity (CEC) and also the related clay content of a soil is of ma-

jor relevance for any modeling of the transport of Sr (see Table 4-19, Table 4-20) at 

these conditions. 

 

Table 4-19: Strontium - Kd values for different soil textures (Sheppard, M. I., Thi-

bault, D. H., 1990) 

soil texture sand silt clay organic 

Kd [L/kg] 15 20 110 150 

 

Table 6-1 which is summarizing all Kd values from the subchapters uses the experi-

enced data from Table 4-20. These values correspond with values of 44 to 86 L/kg for 

a sand shale used by Malkovsky (2009). 

 

Table 4-20: Strontium - Kd values [L/kg] based on CEC, clay content and pH (U.S. 

EPA, 1999b) 

 

 

CEC [meq/100g] / clay content [wt.%] 

3 / < 4 3 – 10 / 4 - 20 10 – 50 / 20 - 60 

pH pH pH 

< 5 5-8 8-10 < 5 5-8 8-10 < 5 5-8 8-10 

Mini-
mum 

1 2 3 10 15 20 100 200 300 

Maxi-
mum 

40 60 120 150 200 300 1.500 1.600 1.700 

mean 21 31 62 80 108 160 800 900 1.000 

note: all values for natural soils, low ionic strength (< 0.1 M), low humic material concentration  
(< 5 mg/l), no organic chelates (e.g. EDTA), and oxidizing conditions 

 

4.22 Sulfur 

Most common species of sulfur in natural waters are sulfates. Sources of sulfates in 

groundwater are sulfate minerals and atmospheric input. Some sediments (e.g. or-

ganic shale) containing sulfites (e.g. pyrite) or other anionic sulfur can also contribute 

sulfate if oxidation processes occur.  

A very important boundary in groundwater is the boundary between S(-II) and S(VI) 

(Figure 4-17). The oxidation of S(-II) species to S(VI) is very energetic with respect to 

thermodynamic behavior. 
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Table 4-21: Sulfur - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 14 49 75 174 

derived by Equation 3-2 using the soil characterization described above 
 

 

 

 

Figure 4-17: Eh-pH diagram for part of the system S-O-H. Assumed activities for dis-

solved S=10−3 (Brookins, 1988) 

4.23 Titanium 

Titanium is highly insoluble in natural groundwater forming TiO2 or TiO(OH)2 (Brook-

ins, 1988) resulting in high Kd values (Table 4-22). 

Table 4-22: Titanium - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 327 1.141 1.737 4.024 

derived by Equation 3-2 using the soil characterization described above 
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4.24 Vanadium 

Most V species (e.g. VO2+, H2VO4
2, H2VO4) are soluble under common groundwater 

conditions. Exceptions are V2O4 und V2O3, which are occurring at medium pH and low 

to medium redox potential. Nevertheless, V (III, IV) is often incorporated into clay 

minerals (octahedral site) instead of forming separate V-oxides (Brookins, 1988). V-

ions are also strongly adsorbed by Al- and Ti-oxides (Bockting et al., 1992). 

 

Table 4-23: Vanadium - Kd values based on concentration ratio (CR) values 

soil texture sand silt clay organic 

Kd [L/kg] 327 1.141 1.737 4.024 

derived by Equation 3-2 using the soil characterization described above 
 

 

 

Figure 4-18: Eh-pH diagrams of the system V-O-H. Σ Mn = 10−10, 298.15 K, 105 Pa 

(Takeno, 2005) 
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5 Half-life of relevant radionuclides 

Any decay of a radionuclide (parent nuclide) produces a daughter nuclide. Some of 

these daughter nuclide may be stable where others may be unstable i.e. radioactive. 

Even though the decay is a random process on an atomic level the decay rate or half-

life is predictable if a large number of atoms of a specific radionuclide are present. 

By looking at the half-life of mobile radionuclides a second process besides retarda-

tion reduces the activity of a radionuclide released at a specific site further down-

stream. Depending on the half-life of a radionuclide its importance for modeling of 

the transfer in groundwater can vary strongly. Radionuclides with a half-life of some 

days or even less, e.g. 7Be, 24Na, 32P/33P and 55Co (Table 5-1), are less important for 

the calculation of the dose of people in the public because the velocity of groundwa-

ter usually is within a range of some centimeters to a few meters a day.  

Table 5-1: Half-life of relevant radionuclides  

radionuclide half-life radionuclide half-life 
3H 12.32*103 d 45Ca 163 d 
7Be 53,3 d 46Sc 83.8 d 
14C 5.73*103 d 47Ca 4.54 d 
22Na 949,7 d 47Sc 3.35 d 
24Na 14.96 h 48Sc 1.82 d 
32Si 3.69*104 d 48V 16.0 d 
32P 14.3 d 49V 330 d 
33P 25.3 d 51Cr 27.7 d 
35S 87,5 d 52Mn 5.6 d 
36Cl 301*103 d 54Mn 312.2 d 
37Ar 35,0 d 55Co 17.53 h 
39Ar 9.82*104 d 55Fe 985.5 d 
42Ar 1.20*104 d 57Co 271.8 d 
44mSc 2.44 d 59Fe 45.1 d 
44Ti 1.73*104 d 60Co 5.27 d 
  90Sr 29.1 a 

dark grey: radionuclide has stable daughter nuclide/s  

light grey: radionuclide has radioactive daughter nuclide/s 

 

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=though
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Thus, there is enough time to significantly reduce the activity of short-living radionu-

clides in groundwater by decay until the groundwater leaves the site of an accelera-

tor or other radionuclide releasing facilities. 

Radioactive daughter nuclides can have an influence on the activity concentration 

and further more on the effective dose at a specific location. Therefore, it is recom-

mended to carefully investigate the possible daughter nuclides of migrating radionu-

clides with respect to their Kd, their half-life and their radiotoxicity. Uncritical radio-

nuclides with respect to daughter nuclides are e.g. tritium (3H), which e. g. decays to 

form stable helium, carbon - 14C is changed by beta decay into stable nitrogen (14N) -, 
36Cl, which decays by producing mainly stable 36Ar, and 45Ca which daughter nuclide is 

stable Sc. 

Other radionuclides can have instable daughter nuclides, e.g. 32Si, which daughter 32P 

decays with a half-life of 14,26 days to form stable 32S, or 47Ca which is changed by 

beta decay into its radioactive daughter 47Sc, which itself decays with a half-life of 

3,35 days to form  stable 47Ti. 

Another example is 90Sr (Table 5-1). 90Sr is changed by beta decay into its radioactive 

daughter 90Y (half-life 2.7 d) which decays by beta decay into stable 90Zr.  

Charts of the nuclides provide information about the kind of decay and the daughter 

nuclides of radionuclides. Sources for a chart of nuclides: 

• Interactive Chart of Nuclides of Brookhaven National Laboratory: 

http://www.nndc.bnl.gov/chart 

• Karlsruhe Nuclide Chart: http://www.nucleonica.net/nuclidechart.aspx 

• Interactive Table of Nuclides from the Korea Atomic Energy Research Institute: 

http://atom.kaeri.re.kr/ 

• Chart of the Nuclides (2010) of the Japan Atomic Energy Agency: 

http://wwwndc.jaea.go.jp/CN10/index.html 

 

file:///C:\Users\b.heuel-fabianek\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.Outlook\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.Outlook\3IDHFZ8N\Interactive%20Chart%20of%20Nuclides%20of%20Brookhaven%20National%20Laboratory:%20http:\www.nndc.bnl.gov\chart
file:///C:\Users\b.heuel-fabianek\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.Outlook\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.Outlook\3IDHFZ8N\Interactive%20Chart%20of%20Nuclides%20of%20Brookhaven%20National%20Laboratory:%20http:\www.nndc.bnl.gov\chart
http://atom.kaeri.re.kr/
http://wwwndc.jaea.go.jp/CN10/index.html
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6 Summary and conclusion 

Transport and fate of radionuclide are essential factors for assessing the impact of an 

accelerator on the groundwater. For an assessment which can be used in licensing 

processes or as an argument in public discussion, it is necessary to quantify travel 

time and element concentration or activity in the aquifer. Computer modeling is the 

common tool for receiving this information.  

The same approach has to be performed if radionuclides enter the environment by 

other processes, e. g. uranium mining activities, nuclear accidents or even assaults 

with radiological dispersal devices (RDD). 

To address soil specific behavior of a solute, a parameter, which quantifies the inter-

action of a migrating element with the surrounding soil/rock, is introduced in many 

computer codes. This parameter, the partition coefficient Kd, describes the partition-

ing of a solute (or contaminant/radionuclide) between the solid and the aqueous 

phases. 

One way to handle the great variability of soil textures, mineralogical composition 

and chemical constituents is the reduction of characterizing parameters to particle 

size distribution (sand, loam, clay) and organic content. If measured Kd values are not 

available in the literature or data bases, an established method to predict Kd values 

based on the bioavailability can be used. The ”soil-to-plant concentration ratio” (CR), 

which is an indicator for the bioavailability, shows a strong negative correlation to Kd 

values. 

Retardation by sorption and precipitation processes causes the mean velocity of a 

specific radionuclide to be slower than the groundwater velocity. From all reported 

radionuclides tritium (hydrogen) and chlorine are the most mobile elements – more 

or less unaffected by these processes - followed by carbon, phosphorus and calcium. 

Other elements such as beryllium, europium, iron, scandium, titanium and vanadium 

can be estimated as relatively immobile.  

For the use of these values in computer modeling it is necessary to show values with 

respect to the specific soil type. 

Table 6-1 gives an overview bandwidth of Kd values which were found in the cited An 

initial estimation with respect to the potential radioactive contamination of ground-
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water downstream of an accelerator site can be made by looking at potential travel 

time of a mobile radionuclide and its half-life.  

If mobile and sufficiently long living nuclides are identified e.g. by activation calcula-

tions these nuclides can be used for a first modeling of radionuclide transport in 

groundwater.literature. It distinguishes between four major types of soil (see chapter 

3.4). If no experienced value from the literature could be derived predicted Kd values 

were used which are based on the soil-to-plant concentration ration (chap. 3.4) men-

tioned above. More information about the Kd values can be found in the element 

specific subchapters of chapter 4. 

Table 6-1:  Kd values [L/kg] for different soil types 

element sand1 silt2 clay3 organic4 

Beryllium 250 800 1.300 3.000 

Calcium 5 30 50 90 

Carbon 5 20 1 70 

Chlorine 0.8 0.25 4.4 11 

Chromium(IV) 70 30 1.500 270 

Cobald 60 1300 550 1.000 

Copper 30 105 159 369 

Europium 236 825 1.255 2.908 

Gold 30 105 159 369 

Hydrogen/Tritium 0 0 0 0 

Iron 220 800 165 600 

Manganese 50 750 180 150 

Mercury 19 66 101 234 

Phosphorus 5 25 35 90 

Scandium 315 1.098 1.671 3.871 

Silicon 35 110 180 400 

Silver 90 120 180 15.000 

Sodium 76 265 403 934 

Strontium 31 108 900 1.540 

Sulfur 14 49 75 174 

Titanium 327 1.141 1.737 4.024 

Vanadium 327 1.141 1.737 4.024 
 

1 sand soils: ≥ 70 % sand sized particles 
2 clay soils: ≥ 35 % clay-sized particles 
3 loam: ≤ 80 % silt-sized particle or even distribu-
tion of sand-, clay- and silt-sized particles 

4 organic soil: > 30 % organic matter 

italic: predicted Kd values using the 
"soil-to-plant concentration ration" 
(CR) from Baes et al. (1990) 

normal: experienced Kd values taken 
from the literature 
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By looking at the half-life of mobile radionuclides a second process reduces the activi-

ty further downstream of a radionuclide released at a specific site. 

EU Council Directive 96/29/EURATOM (EURATOM, 1996) gives basic safety standards 

for all EU countries for the protection of the health of workers and the general public 

against the dangers arising from ionizing radiation. This directive limits the total an-

nual effective dose of 1 mSv to any member of the public (assuming the continuous 

presence of a person at the worst possible position of a fence enclosing a facility).  

Effective dose, by definition, is the sum of the weighed equivalent doses in all the 

tissues and organs of the body specified in Annex II (EU Council Directive 

96/29/EURATOM) from internal and external irradiation. 

Additionally, fulfillment of the ALARA principle (doses have to remain “As Low As 

Reasonably Achievable”) is required.  

Figure 6-1 shows the main protection levels. More information about licensing proce-

dures for ion beam facilities can be found in a technical report of the ESS project (Eu-

ropean Spallation Source / Europäische Spallations-Neutronenquelle, Moormann et 

al. (2003)). 

 

Controlled Area

Supervised Area

Controlled Area

Supervised Area

members of the
public:

< 1 mSv/a
(incl. emissions)

workers; < 6 mSv/a

effective dose:

workers; category A: < 20 mSv/a

workers; category B: < 6 mSv/a

effective dose:

 

Figure 6-1: "1 mSv effective dose concept" of Council Directive 96/29/EURATOM 

 

Due to differences in sensitivity of tissues/organs the effective dose has to be calcu-

lated using weighing factors for radiation and for tissues. Therefore, after modeling 

the transport of specific radionuclides, calculation of their concentrations and activity 



KD-REPORT CHAP. 6  

   45 

concentrations at a specific location, a final calculation has to be made to  re-

ceive/define the effective dose. This dose is the most relevant factor for any discus-

sion about effectiveness and optimisation of the shielding with respect to radiation 

protection of the public and the environment. 
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Notes:  

The EC is not liable for any use that may be made of the information contained here-

in. 

An Excel-sheet for calculating KD values based on the so called “soil-to-plant concen-

tration ratio” (CR, Baes (1984)) can be obtained from the author of this report. 
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