000154031 001__ 154031
000154031 005__ 20240610121112.0
000154031 0247_ $$2doi$$a10.1007/s10439-013-0922-3
000154031 0247_ $$2WOS$$aWOS:000331976300011
000154031 037__ $$aFZJ-2014-03445
000154031 041__ $$aEnglish
000154031 082__ $$a610
000154031 1001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b0
000154031 245__ $$aComputational biorheology of human blood flow in health and disease
000154031 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000154031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1402639068_14237
000154031 3367_ $$2DataCite$$aOutput Types/Journal article
000154031 3367_ $$00$$2EndNote$$aJournal Article
000154031 3367_ $$2BibTeX$$aARTICLE
000154031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154031 3367_ $$2DRIVER$$aarticle
000154031 520__ $$aHematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia.
000154031 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000154031 7001_ $$0P:(DE-HGF)0$$aDao, M.$$b1
000154031 7001_ $$0P:(DE-HGF)0$$aKarniadakis, G. E.$$b2$$eCorresponding Author
000154031 7001_ $$0P:(DE-HGF)0$$aSuresh, S.$$b3
000154031 773__ $$0PERI:(DE-600)1477155-x$$a10.1007/s10439-013-0922-3$$n2$$p368-387$$tAnnals of biomedical engineering$$v42$$x0191-5649$$y2014
000154031 8564_ $$uhttps://juser.fz-juelich.de/record/154031/files/FZJ-2014-03445.pdf$$yRestricted$$zPublished final document.
000154031 909CO $$ooai:juser.fz-juelich.de:154031$$pVDB
000154031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154031 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000154031 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000154031 9141_ $$y2014
000154031 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000154031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154031 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154031 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154031 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154031 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154031 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154031 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154031 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000154031 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000154031 980__ $$ajournal
000154031 980__ $$aVDB
000154031 980__ $$aI:(DE-Juel1)IAS-2-20090406
000154031 980__ $$aI:(DE-Juel1)ICS-2-20110106
000154031 980__ $$aUNRESTRICTED
000154031 981__ $$aI:(DE-Juel1)IBI-5-20200312
000154031 981__ $$aI:(DE-Juel1)IAS-2-20090406
000154031 981__ $$aI:(DE-Juel1)ICS-2-20110106