000154057 001__ 154057
000154057 005__ 20240711085620.0
000154057 0247_ $$2doi$$a10.1111/jace.13204
000154057 0247_ $$2WOS$$aWOS:000346099800049
000154057 0247_ $$2altmetric$$aaltmetric:21823529
000154057 037__ $$aFZJ-2014-03462
000154057 082__ $$a660
000154057 1001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b0$$eCorresponding Author$$ufzj
000154057 245__ $$aGadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure and Thermal Cycling Behavior
000154057 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014
000154057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421930743_13621
000154057 3367_ $$2DataCite$$aOutput Types/Journal article
000154057 3367_ $$00$$2EndNote$$aJournal Article
000154057 3367_ $$2BibTeX$$aARTICLE
000154057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154057 3367_ $$2DRIVER$$aarticle
000154057 520__ $$aProcessing of Gd2Zr2O7 by atmospheric plasma spraying (APS) is challenging due to the difference in vapor pressure between gadolinia and zirconia. Gadolinia is volatilized to a greater extent than zirconia and the coating composition unfavorably deviates from the initial stoichiometry. Aiming at stoichiometric coatings, APS experiments were performed with a TriplexPro™ plasma torch at different current levels. Particle diagnostics proved to be an effective tool for the detection of potential degrees of evaporation via particle temperature measurements at these varied current levels. Optimized spray parameters for Gd2Zr2O7 in terms of porosity and stoichiometry were used to produce double-layer TBCs with an underlying yttria-stabilized zirconia (7YSZ) layer. For comparison, double layers were also deposited with relatively high torch currents during Gd2Zr2O7 deposition, which led to a considerable amount of evaporation and relatively low porosities. These coatings were tested in thermal cycling rigs at 1400°C surface temperature. Double layers manufactured with optimized Gd2Zr2O7 spray parameters revealed very good thermal cycling performance in comparison to standard 7YSZ coatings, whereas the others showed early failures. Furthermore, different failure modes were observed; coatings with long lifetime failed due to TGO growth, while the coatings displaying early failures spalled through crack propagation in the upper part of the 7YSZ layer.
000154057 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000154057 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000154057 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b1$$ufzj
000154057 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b2$$ufzj
000154057 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3$$ufzj
000154057 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.13204$$n12$$p4045-4051$$tJournal of the American Ceramic Society$$v97$$x0002-7820$$y2014
000154057 8564_ $$uhttps://juser.fz-juelich.de/record/154057/files/FZJ-2014-03462.pdf$$yRestricted
000154057 909CO $$ooai:juser.fz-juelich.de:154057$$pVDB
000154057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154057 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000154057 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000154057 9141_ $$y2014
000154057 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154057 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000154057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154057 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154057 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154057 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154057 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154057 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000154057 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000154057 980__ $$ajournal
000154057 980__ $$aVDB
000154057 980__ $$aI:(DE-Juel1)IEK-1-20101013
000154057 980__ $$aUNRESTRICTED
000154057 981__ $$aI:(DE-Juel1)IMD-2-20101013