000154079 001__ 154079
000154079 005__ 20210129213831.0
000154079 0247_ $$2doi$$a10.1104/pp.114.236018
000154079 0247_ $$2ISSN$$a1532-2548
000154079 0247_ $$2ISSN$$a0032-0889
000154079 0247_ $$2WOS$$aWOS:000335906300004
000154079 0247_ $$2altmetric$$aaltmetric:4951652
000154079 0247_ $$2pmid$$apmid:24590857
000154079 037__ $$aFZJ-2014-03481
000154079 082__ $$a580
000154079 1001_ $$0P:(DE-HGF)0$$aGhirardo, A.$$b0$$eCorresponding Author
000154079 245__ $$aMetabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene
000154079 260__ $$aRockville, Md.: Soc.$$bJSTOR$$c2014
000154079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1403102087_30228
000154079 3367_ $$2DataCite$$aOutput Types/Journal article
000154079 3367_ $$00$$2EndNote$$aJournal Article
000154079 3367_ $$2BibTeX$$aARTICLE
000154079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154079 3367_ $$2DRIVER$$aarticle
000154079 520__ $$aThe plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants andproduces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stableisotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidicisoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus 3 canescens). Weassessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) themain carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold highercarbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand forcarbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-Dxylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained thisreduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-D-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEPpathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected onlyapproximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. b-carotene and lutein, most probablyto compensate for the absence of isoprene and its antioxidant properties.
000154079 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000154079 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000154079 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154079 7001_ $$0P:(DE-HGF)0$$aWright, L. P.$$b1
000154079 7001_ $$0P:(DE-HGF)0$$aBi, Z.$$b2
000154079 7001_ $$0P:(DE-HGF)0$$aRosenkranz, M.$$b3
000154079 7001_ $$0P:(DE-HGF)0$$aPulido, P.$$b4
000154079 7001_ $$0P:(DE-HGF)0$$aRodriguez-Concepcion, M.$$b5
000154079 7001_ $$0P:(DE-HGF)0$$aNiinemets, U.$$b6
000154079 7001_ $$0P:(DE-Juel1)142357$$aBruggemann, N.$$b7$$ufzj
000154079 7001_ $$0P:(DE-HGF)0$$aGershenzon, J.$$b8
000154079 7001_ $$0P:(DE-HGF)0$$aSchnitzler, J.-P.$$b9
000154079 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.114.236018$$gVol. 165, no. 1, p. 37 - 51$$n1$$p37 - 51$$tPlant physiology$$v165$$x1532-2548$$y2014
000154079 8564_ $$uhttps://juser.fz-juelich.de/record/154079/files/FZJ-2014-03481.pdf$$yRestricted$$zPublished final document.
000154079 909CO $$ooai:juser.fz-juelich.de:154079$$pVDB:Earth_Environment$$pVDB
000154079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000154079 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000154079 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000154079 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000154079 9141_ $$y2014
000154079 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154079 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154079 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154079 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154079 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154079 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154079 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000154079 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154079 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154079 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000154079 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000154079 980__ $$ajournal
000154079 980__ $$aVDB
000154079 980__ $$aI:(DE-Juel1)IBG-3-20101118
000154079 980__ $$aUNRESTRICTED