000154083 001__ 154083
000154083 005__ 20210129213831.0
000154083 037__ $$aFZJ-2014-03485
000154083 041__ $$aEnglish
000154083 1001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b0
000154083 1112_ $$aEighth International Workshop on Agents in Traffic and Transportation$$cParis$$d2014-05-05 - 2014-05-06$$gATT @ AAMAS-2014$$wFrance
000154083 245__ $$aInfluence of the interaction range on the stability of following models
000154083 260__ $$c2014
000154083 29510 $$aProceeding of the Eighth International Workshop on Agents in Traffic and Transportation
000154083 300__ $$a10 p.
000154083 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1403699320_4388
000154083 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000154083 3367_ $$033$$2EndNote$$aConference Paper
000154083 3367_ $$2ORCID$$aCONFERENCE_PAPER
000154083 3367_ $$2DataCite$$aOutput Types/Conference Paper
000154083 3367_ $$2DRIVER$$aconferenceObject
000154083 3367_ $$2BibTeX$$aINPROCEEDINGS
000154083 520__ $$aOne proposes to analyze the stability of the uniform solutions of microscopic second order following models with $K\ge1$ predecessors in interaction. We calculate general conditions for that the linear stability occurs, and explore the results with particular distance based pedestrian and car-following models. Non linear relations between $K$ and the stability are established.
000154083 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000154083 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1
000154083 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b2
000154083 8564_ $$uhttp://www.inf.pucrs.br/felipe.meneguzzi/download/AAMAS_14/workshops/AAMAS2014-W15/att2014_paper_15.pdf
000154083 8564_ $$uhttps://juser.fz-juelich.de/record/154083/files/FZJ-2014-03485.pdf$$yRestricted
000154083 909CO $$ooai:juser.fz-juelich.de:154083$$pVDB
000154083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154083 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000154083 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000154083 9141_ $$y2014
000154083 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000154083 980__ $$acontrib
000154083 980__ $$aVDB
000154083 980__ $$acontb
000154083 980__ $$aI:(DE-Juel1)JSC-20090406
000154083 980__ $$aUNRESTRICTED