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Abstract

This Thesis is devoted to the microscopic study of the inverse Faraday effect

at subpicosecond time scales. The inverse Faraday effect (IFE) is a magneto-

optical process, which leads to the generation of magnetization by circular

polarized light. Ultrafast manipulation of spin dynamics is of highly impor-

tance for the development of novel concepts of information processing and data

storage. Therefore, the IFE, which provides the possibility to non-thermally

and coherently induce and control magnetization dynamics at femtosecond

time scales, gained much significance in recent years. However, despite its

relevance for technological applications, the origin of this effect is still poorly

understood.

A theoretical description for the IFE induced by stationary laser light was

developed in 1960’ies considering the experimental conditions available at that

time. However, the laser technology moved forward dramatically in the last

fifty years. Magneto-optical experiments nowadays are performed by laser

pulses of several tens of femtoseconds duration, which is five orders of magni-

tude faster than that half century ago. This leads to principally new physics of

laser induced magnetic processes, which requires novel theoretical approaches

for their interpretation.

It is shown here in detail that the mechanisms of magnetization changes

due to the IFE triggered by ultrashort laser pulses is quite different from that

by stationary excitation. A new theoretical approach based on the solution of

the time-dependent Schrödinger equation is provided in this Thesis. It allows

to describe magnetization time evolution triggered by circularly-polarized laser

pulses at subpicosecond time scales. It is shown that the ultrafast IFE consists

of two processes: the stimulated Raman scattering, which leads to the change

of a system’s magnetic state, and the excitation of magnetization precession

due to the deviation of the magnetic vector from its ground state.

The study of the electron structure, which defines the selection rules for

light-induced transitions, is necessary for the investigation of the magneto-

optical effects in crystals. The microscopic considerations are especially rel-
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Abstract

evant for the investigation of ultrafast magnetic processes induced by laser

pulses, the spectral width of which is of the same order as the electron inter-

actions energies. A detailed study of the role of various electron interactions,

especially that of the spin-orbit coupling, is performed here in detail. The de-

pendence of the value of the IFE on ultrafast laser pulse properties is studied.

In view of technological applications, it is not only important to know the

mechanism of the magnetization dynamics excitation, but also to be able to

manipulate the induced dynamics. Therefore, it is useful to know how the

optical process affects total angular momentum components individually. The

Heisenberg picture for the ultrafast IFE is derived from the Schrödinger picture

for this purpose. The operator describing the perturbation of a system by an

electric field will be substituted by a time-dependent operator expressed in

terms of momentum operators. The operator allows to separate the action of

light on a magnetic system from that of other possible magnetic interactions.

The equations of motion of magnetic components during the excitation are

derived from this operator.

This approach is first applied to investigate spin dynamics driven by a

common action of the IFE and an external magnetic field. It is demonstrated

that the spin dynamics during the excitation is considerably affected by the

magnetic field even if the period of the induced Larmor oscillation is several

tens times higher than the laser pulse duration. Finally, the laser induced

dynamics of an easy plane antiferromagnet is described. The equations of

motion, which determine the time evolution of the magnetic vectors of the

magnetic sub-lattices, are derived. It is shown the ultrafast IFE induces a net

magnetic moment in this system.
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Zusammenfassung

Diese Arbeit ist der mikroskopischen Untersuchung des inversen Faraday

Effekts (IFE) auf subpikosekunden Zeitskalen gewidmet. Der IFE ist ein

magneto-optischer Prozess, bei dem zirkular polarisiertes Licht Magnetisierung

in Materialien erzeugt. Ultraschnelle Manipulation der Spindynamik hat große

Bedeutung für die Entwicklung neuartiger Konzepte der Informationsverar-

beitung und Datenspeicherung. Der IFE bietet eine Möglichkeit für nicht-

thermische, kohärente Erzeugung und Kontrolle von Magnetisierung in Fem-

tosekundenintervallen und hat in den letzten Jahren viel an Bedeutung gewon-

nen. Trotz seiner Relevanz für technologische Anwendungen, ist der Ursprung

dieses Effektes noch schlecht verstanden.

Eine theoretische Beschreibung des IFE, induziert durch stationäres Laser-

licht, wurde in sechziger Jahren entwickelt, wobei die zu diesem Zeitpunkt

verfügbaren experimentellen Bedingungen berücksichtigt wurden. Doch die

Lasertechnologie sich in den letzten fünfzig Jahren weiter entwickelt. Magneto-

optische Experimente werden heutzutage mit Laserimpulsen von wenigen

Zehntel Femtosekunden Dauer, fünf Größenordnungen kürzer als die vor ein

halben Jahrhundert, durchgeführt. Das führt zu grundsätzlich neuer Physik

und neue theoretische Ansätze zur Interpretation laser-induzierter magnetis-

chen Prozesse sind erforderlich.

Es wird hier im Detail gezeigt, dass die Mechanismen der Mag-

netisierungsveränderungen durch den IFE, ausgelöst von ultrakurzen Laser-

impulsen, ganz anderes sind als bei stationärer Anregung. Ein neuer

Ansatz, basierend auf Lösung der zeitabhängigen Schrödinger Gleichung,

wird in dieser Arbeit entwickelt. Er erlaubt die Zeitentwicklung der Mag-

netisierung zu beschreiben, die durch zirkular-polarisierte Laserimpulse unter

einer Pikosekunde Dauer verursacht wird. Es wird gezeigt, dass der ultra-

schnelle IFE aus zwei Prozessen besteht: die stimulierte Raman-Streuung,

die zu einer Veränderung eines magnetischen Systemzustandes führt, und die

Anregung der Magnetisierungspräzession aufgrund der Abweichung des mag-

netischen Vektors von seinem Grundzustand.
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Zusammenfassung

Die Kenntniss der Elektronenstruktur, die die Auswahlregeln für lichtin-

duzierte Übergänge bestimmt, ist notwendig für die Untersuchung magneto-

optischer Effekte in Kristallen. Diese mikroskopischen Überlegungen sind

besonderes relevant für die Untersuchung von ultraschnellen magnetischen

Prozessen induziert durch Laserimpulse, deren spektrale Breite von der gle-

ichen Größenordnung wie Elektronenwechselwirkungsenergie ist. Eine detail-

lierte Studie der Rolle der verschiedenen Elektronenwechselwirkungen, vor

allem, der Spinbahnwechselwirkung, wird hier im Detail durchgeführt. Die

Abhängigkeit der Stärke des IFE von den Eigenschaften der Laserimpulse wird

untersucht.

Im Hinblick auf technische Anwendungen reicht es nicht den Mechanismus

der Anregung der Magnetisierungsdynamik zu kennen, sondern man muss in

der Lage sein die induzierte Dynamik zu manipulieren. Daher ist es notwendig

zu wissen, wie der optische Prozess unmittelbar auf die Drehimpulskomponen-

ten wirkt. Hierzu wird das Heisenbergbild zur Beschreibung des ultraschnellen

IFE aus dem Schrödinger Bild hergeleitet. Die Störung eines Systems durch

ein elektrisches Lichtfeld kann dann durch eine zeitabhängige Kombination

von Drehimpulsoperatoren ausgedrückt werden. Mit dieser Operatorbeschrei-

bung kann man die Wirkung von Licht auf ein magnetisches System von an-

deren magnetischen Wechselwirkungen trennen. Die Bewegungsgleichungen

von magnetischen Komponenten während der Anregung werden aus dieser

Operatorbeschreibung abgeleitet.

Mit diesen Bewegungsgleichungen wird zunächst Spindynamik erzeugt

durch das Zusammenspiel von IFE und externem Magnetfeld, untersucht. Es

wird gezeigt, dass die Spindynamik während der Anregung durch das Mag-

netfeld wesentlich beeinflusst wird, auch wenn die Schwingungsperiode der

induzierten Larmorpräzession um ein zehnfaches größer als die Laserpulsdauer

ist. Schließlich wird die laserinduzierte Dynamik eines Antiferromagneten mit

leichter Ebene beschrieben. Die Bewegungsgleichungen, die die zeitliche En-

twicklung der magnetischen Vektoren der magnetischen Teilgitter bestimmen,

werden abgeleitet. Es wird gezeigt, dass der ultraschnelle IFE ein magnetisches

Moment in diesem System erzeugt.
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Conventions

The following conventions are used throughout this Thesis.

Notations

Expectation values of operators are written without brackets. For example, if

Â is an operator, then

A = 〈Â〉
Partial derivatives with respect to time are expressed by a prime. For example,

if B(t) is a time-dependent function, then

B′ =
∂B

∂t

Units

All equations in the thesis are written in Hartree atomic units [1, 2]. Table

1 contains the fundamental quantities, which are set to one in atomic units.

Table 2 contains derived quantities, which are equal to one in atomic units,

and their values in SI units.

Quantity Symbol Value in SI units

Electron mass me 9.10938291(40)× 10−31 kg

Elementary charge e 1.602176565(35)× 10−19 C

Reduced

Planck’s constant ~ 1.054571726(47)× 10−34 J s

Coulomb force constant 1/(4πǫ0) 8.9875517873681× 109 N m2 C−2

Table 1: Fundamental constants of atomic units and their values in SI units.
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Conventions

Quantity Definition Value in SI units

Length Bohr radius 5.2917720859(36)×10−11 m

a0 = ~
2/(mecα)

Energy Hartree energy 4.35974417(75)×10−18 J

Eh = α2mec
2

Time ~/Eh 2.418884326505(16)×10−17 s

Velocity a0Eh/~ = αc 2.1876912633(73)×106 m/s

Force Eh/a0 8.2387225(14)×10−8 N

Temperature Eh/kB 3.1577464(55)×105 K

Pressure Eh/a
3
0 2.9421912(19)×1013 Pa

Electric field Eh/(ea0) 5.14220652(11)×1011 V/m

Magnetic induction ~/(ea20) 2.35051742(20)×105 T

Table 2: Derived atomic units and their values in SI units. α is the fine

structure constant: α = e2/(4πǫ0~c) ≈ 1/137.
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Chapter 1

Introduction

1.1 Ultrafast optical manipulation of mag-

netic order

Ultrafast optical control of magnetization dynamics is a rapidly developing

field of research [3,4]. This topic attracts much attention due to the potential

usefulness for technological applications in spintronics, data storage and ma-

nipulation, and quantum information processing. At the same time, it puts

fundamental questions about spin and orbital dynamics on time scales τ cor-

responding to the energy of electron interactions (Eel.int. ∼ 1/τ).

The subpicosecond optical manipulation techniques are highly promising

for the dramatical decrease of the magnetic recording speed. Since several

years it was believed that the magnetization reversal via the magnetic field-

induced precessional motion was the fastest method to record a bit. However,

it was shown that the speed of the precessional magnetic switching is lim-

ited to several picoseconds [5]. This barrier is overcome by the laser driven

magnetization reversal, which can take place on subpicosecond time scales [6].

One of the pioneering experiments, which demonstrated that laser pulses

can excite ultrafast magnetization dynamics, was done by Beaurepaire et al.

in 1996, when they showed that laser pulses can induce demagnetization in a

ferromagnetic nickel film on femtosecond time scales [7]. These results raised

much interest and led to further investigations of laser driven subpicosecond

magnetization dynamics, which developed gradually into a new field of research

[4]. It was shown that the excitation by ultrafast laser pulses can lead not only

to demagnetization, but to other effects on magnetization, such as generation

of coherent magnetic precession [8–10], spin reorientation [11] and modification

of magnetic structure [12].
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Chapter 1. Introduction

Figure 1.1: The figure is taken from Ref. [9]. Magnetic precessions in DyFeO3

measured by the Faraday effect. σ+ and σ− refer to right-handed and left-

handed circularly polarized laser pulses, respectively. The inset represents the

effective fields δH+ and δH− induced by σ+ and σ− pulses.

Although much experimental [13–18] and theoretical [19–23] work has been

done towards understanding of the processes responsible for these effects, they

are still unclear and remain a matter of hard debates [24–28]. The problem

to reveal the underlaying mechanisms of laser driven magnetization dynamics

is that it is hard to distinguish different processes triggered by a laser pulse

and determine the contribution of various electron spin interactions to the spin

dynamics. There are also difficulties associated with interpretations of the mea-

surements performed by techniques based on magneto-optical response, since

they are designed to probe a medium being in equilibrium [29–31]. Thus, ef-

fects due to subpicosecond laser excitations of magnetic states of a medium

open new insight on the spin dynamics and put many fundamental and intrigu-

ing questions. Together with potential technological usefulness, this makes the

study of the topic very attractive.

This thesis is devoted to the theoretical investigation of the inverse Faraday

effect (IFE), one of the optically driven magnetization processes, which can

take place on femtosecond time scales. According to its classical definition,

the IFE is the generation of magnetization in a non-absorbing medium by

circularly polarized laser pulses [32,33]. It will be shown below that this effect

has a central role for the induced magnetization dynamics by ultrafast lasers.

12



1.1. Ultrafast optical manipulation of magnetic order

In 2005, it was demonstrated by Kimel et al. that femtosecond laser pulses

can induce and coherently control the spin dynamics in magnetic materials

non-thermally [9]. Circularly polarized laser pulses, called pump pulses, of 200

fs duration irradiated the rare-earth orthoferrite DyFeO3. The Fe spins in this

compound are coupled antiferromagnetically and are slightly canted due to the

Dzialoshinsky-Moriya interaction, thus DyFeO3 is a weak ferromagnet. Laser

pulses, called probe pulses, were used for the measurement of the magnetization

of the samples via the (direct) Faraday effect, which is the rotation of the

polarization plane of light transmitted through a magnetic medium [33]. It is

called Faraday rotation and is proportional to magnetization of the medium.

The authors showed that the pump pulses excite the oscillations of the

Fe spins around their equilibrium direction (see Fig. 1.1). The phase of the

oscillations depends on the helicity of the laser pulse and was opposite for laser

pulses of opposite helicities. These phenomena were attributed to the inverse

Faraday effect (IFE).

This work introduced a new relevant approach to realize the ultrafast all-

optical control of magnetization. The method to non-thermally manipulate

magnetization dynamics is of high importance for possible applications in mag-

netic recording. This approach helps to avoid the problems caused by material

heating: the required cooling time limits the repetition frequency and heat dif-

fusion puts limits on the recording density [34]. At the same time, this process

can be used in combination with other laser-induced mechanisms to observe

versatile effects on magnetization dynamics. Thus, the inverse Faraday effect

known since the 1960’s [32, 35, 36] started to attract much attention in recent

years.

Later on, the IFE triggered by ultrashort circularly polarized laser pulses

was shown in other rare-earth orthoferrites. It caused the excitation of an-

tiferromagnetic resonances in TmFeO3 [37], quasiferromagnetic resonance in

ErFeO3 [38], and was used to observe the novel mechanism of “inertia-driven

spin switching” (see Ref. [39] for details) in HoFeO3. All these compounds

are weak ferromagnets as is typical for rare-earth orthoferrites. However, the

demonstrations of the ultrafast IFE are not limited to the orthoferrites. It was

shown that the process caused the excitation of coherent magnons in easy-plane

weak ferromagnet FeBO3 [10], the precession of magnetization of rare-earth

paramagnet Dy3Al5O12 in an external magnetic field [40], and magnetization

changes in paramagnetic NaTb(WO4)2 crystals [41] and in a ionic liquid 1-

butyl-3-methylimidazolium tetrachloroferrate, which is paramagnetic [42].

The inverse Faraday effect in an compensated antiferromagnet was observed

by Satoh et al for the first time. Circularly polarized laser pulses of 120 fs

13



Chapter 1. Introduction

duration excited out-of-plane and in-plane modes of antiferromagnetic spin

oscillations in NiO with the frequency of 1.07 THz and 140 GHz (the period

of 900 fs and 7 ps) correspondingly [43, 44]. This finding is quite interesting,

because there is no net magnetization in this material as opposed to canted

antiferromagnets, which were used in the experiments demonstrating the IFE

before. In addition, it is relevant for the study of the terahertz radiation from

NiO, which attracts much attention due to the simple structure and room

temperature antiferromagnetism of this material [45–49].

Reid et al. demonstrated that the ultrafast IFE led to an unusual magnetic

behavior in lutetium iron garnet [Lu1.69Y0.65Bi0.66](Fe3.85Ga1.15)O12 [50]. There

are two kind of sites in this compound, where magnetic Fe ions are situated:

a tetrahedral-coordinated site and an octahedral-coordinated site. The sites

of different symmetry are antiferromagnetically coupled, thereby the ones of

the same symmetry are ferromagnetically coupled forming two ferromagnetic

sublattices. The ratio of tetrahedral sites to octahedral sites is 3 to 2, therefore

the compound is ferrimagnetically ordered. The magneto-optical properties of

the sites of different symmetry are inequivalent [51]. The authors showed that

this diversity led to a distinct response of the sublattices to the excitation by

circularly polarized laser pulses. Thus, the IFE acted locally on each sublat-

tice, which caused the canting between them. The precession of the canted

Fe moments was attributed to the excitation of a magnetic-dipole forbidden

exchange resonance1, which had not been observed previously. Its frequency

provided the value of the exchange interaction between the magnetic sublat-

tices. This study demonstrated that the action of the IFE goes beyond its

classical interpretation as an effective magnetic field produced by circularly

polarized laser light, since it influences sublattices differently in contrast to a

magnetic field.

The joint action of the IFE with other ultrafast laser-induced magneto-

optical effects can also lead to striking results on magnetization dynamics.

It was shown in Refs. [52, 53] that the combination of the ultrafast IFE and

the non-thermal effect of optically induced magnetic anisotropy [11] could be

used to control magnetization in magnetic garnet films. Femtosecond laser

pulses were used to coherently prepare a new long-lived magnetic state in

Lu3−x−yYxBiyFe5−zGazO12 ferrimagnetic garnet films and to rotate magneti-

zation in it during 100 femtoseconds via the IFE.

Makino et al. observed magnetization precession in ferromagnetic EuO

1The two sublattices have equal gyromagnetic ratios, which are both determined by Fe

ions. Thus, there is no torque, which can be exerted by a magnetic field, and the mode is

forbidden.
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1.1. Ultrafast optical manipulation of magnetic order

Figure 1.2: The figure is taken from Ref. [56]. The all-optical recording of mag-

netic bits in GdFeCo. A circularly polarized laser beam is scanned across the

sample. Depending on the desired direction of magnetization, the polarization

of the beam is switched between left and right circular.

films, which depended on the helicity of circularly-polarized laser pulses of

100 fs duration [54]. The observation was explained by the combined action

of the ultrafast IFE with the novel effect of optically induced magnetization

enhancement2.

Despite of the advantage of the IFE that it is a non-thermal process, the

action of this effect together with thermal processes started to attract much

interest since remarkable results had been demonstrated by Stanciu et al [56].

They showed that a single circularly polarized pulse of 40 fs duration triggered

a full magnetization reversal in an amorphous ferrimagnetic alloy GdFeCo. The

magnetization reversal was the result of both laser heating and the ultrafast

IFE. The authors could switch the magnetization and write bits, controlling

this process by changing the light helicity (see Fig. 1.2). This results were of

high importance for technological applications, since it was the first observa-

tion of magnetization reversal by a subpicosecond stimulus [57]. Therefore,

this finding motivated a plenty of investigations of the magnetization reversal

mechanism in GdFeCo [58–65]. However, it was demonstrated later that the

laser induced heating, i. e. the absorption of photons from a linearly polar-

2The effect of optically induced magnetization enhancement in EuO is attributed to the

optical transition from the 4f to the 5d state, see Ref. [55] for the details.
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ized subpicosecond laser pulse, could be sufficient to switch magnetization in

GdFeCo [65].

A further intriguing result due to an involved interplay of the IFE effect

with the effect of laser heating was observed by Jong et al [66]. The au-

thors demonstrated that the action of a single 60 fs circularly polarized laser

pulse can cause a creation of a magnetic domain in rare-earth orthoferrite

(SmPr)FeO3 on a picosecond time scale. The magnetization of the domains

was determined by the helicity of the laser pulse. The heating by the laser pulse

mediated a spin reorientation phase transition in the material several tens of

picoseconds after the excitation. At much shorter time scales, the IFE excited

a coherent low-amplitude spin precession. Thereby, a laser pulse helicity deter-

mined the magnetic state of a domain at the time, when the phase transition

started to take place. That provided a desired direction for resulting domain

magnetization after the phase transition. This observation demonstrated that

the IFE can control a magnetic phase transition and creation of magnetic

domains without application of an external magnetic field.

Another potential application of the IFE was suggested by Terui et al. [67].

The authors used the IFE to induce two-dimensional spin wave propagation in

Bi-doped rare-earth iron garnet, introducing a new method, which is relevant

for the field of magnonics3. Very recently, this finding was implemented by

Satoh et al. in Ref. [69] to realize a direction control of spin-wave emission by

circularly polarized laser pulses spatially shaped into an ellipse. This is a very

important achievement with the potential for fast and arbitrary synthesis of

spin-wave patterns, which was not possible before.

Summing up, the ultrafast IFE has a very high significance for the field of

ultrashort laser induced magnetization. The coherent excitation of spin waves

on ultrashort time scales, which can be triggered by the IFE, is of high impor-

tance for the field of spintronics, magnetic storage technology and quantum

computation (the latter will be discussed in the next Section). Complicated

dynamics induced by the IFE can provide an access to a new information on

the elementary interactions in materials as was shown by Reid et al. [50]. A

skillful combination of the IFE with other effects induced by ultrafast laser

pulses can significantly influence magnetic states of a medium, demonstrating

remarkable and untrivial results.

The theory describing the IFE introduced by Pitaevskii [32] and developed

3Magnonincs is the field of research, by which one tries to use spin waves to store, carry

and process information in nanostructure elements. For instance, spin wave packets can

be used to carry information on much longer distances than by electric currents (see, for

example, Ref. [68]).
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1.1. Ultrafast optical manipulation of magnetic order

further by Pershan et al. [35] about 50 years ago can be referred to as the

classical theory of the IFE. At that time, typical laser excitation times were

several tens of nanoseconds, and the theory was derived for a medium in ther-

mal equilibrium. The condition of thermal equilibrium allowed to interpret the

action of circularly polarized light as the creation of an effective magnetic field.

However, this assumption cannot be applied for the magnetization processes

taking place on femtosecond time scales, which are shorter than any relaxation

time of a system. Therefore, the classical theory becomes unvalid, when char-

acteristic times of the magnetization dynamics reduce to the subpicosecond

region.

A comprehensive experimental study, which proved that the thermody-

namic model of the inverse Faraday effect is not applicable at femtosecond

time scales, was performed by Reid et al. in Ref. [40]. The authors came to

the conclusion that the ultrafast IFE instead should be described microscop-

ically. The same idea has been provided by Satoh et al., who showed that

treatment of the IFE as an effective magnetic field is not applicable to de-

scribe magnetization dynamics at subpicosecond time region [43]. However,

the classical theory is still being used to describe the IFE on femtosecond time

scales.

This thesis presents a new approach to study the IFE, which can be applied

at femtosecond time scales. For this aim, a thorough study of the microscop-

ical mechanisms responsible for the IFE on the subpicosecond time scale is

performed. It will be shown how the presented theory is connected with the

classical one, and what are the limitations of the latter.

There are several fundamental questions about the mechanisms of ultrafast

spin excitations, which are very important for the field of ultrafast laser induced

magnetization dynamics, since the answers to them provide the idea about the

mechanisms and, as a result, about the time limits of magnetic processes. The

first question is about the time evolution of angular momentum and the role of

the spin-orbit coupling for the optical generation of magnetization [16,70–72].

The other one is about the coupling of laser light with electron interactions,

especially if their energies correspond to the time scales of laser excitation:

Eel.int. ∼ 1/τ (Ref. [4] and the references therein). These issues are addressed

in this thesis in detail. I present the analysis of the function of the spin-orbit

coupling for the IFE and its effect on the time evolution of a spin during

the excitation. The subpicosecond laser driven magnetization precessions due

to the interplay of different interactions of various magnitudes is studied and

compared, thereby the contributions of the exchange, spin-orbit, crystal field

and Zeeman interactions are considered.
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Techniques to manipulate magnetization vector motion, which would follow

an arbitrarily multidimensional trajectory are essential for the field of spintron-

ics. Therefore, the coherent control of magnetization precession by laser pulses

attracts much attention (see, for instance, Ref. [47]). The theoretical model

of magnetization precessions induced by femtosecond circularly polarized light

provided here is necessary for the design of techniques to coherently control

such dynamics. The study of the dependencies of magnetization precessions

on properties of a single laser pulse, which is also done in this thesis, can be

very useful for realizations of all-optical control of magnetization.

Finally, the spin-flip stimulated Raman scattering process, which is the

optical process responsible for the IFE [35], and thus thoroughly studied here,

is the essential mechanism for coherent optical control of a qubit state. The

role of this process for the quantum information processing is discussed in the

next Section.

1.2 Ultrafast optical control of spin based

qubits

The ability to completely control the state of a qubit is the basis for quantum

information processing. One of the most promising realizations of the control

of a qubit is based on the optical manipulation of a spin state [73,74]. A single

qubit operation for spin based qubits is an arbitrary coherent rotation of a

qubit spin. The rotations can be performed by laser driven transitions, which

bring the system in a new spin state. The main attractiveness of these kind of

methods is that the operation time can be dramatically decreased due to the

possibility to perform the optical control over a spin state on picosecond or even

femtosecond time scales, which are much shorter than the spin decoherence

time4.

These schemes are typically applied to electron or hole spins in charged

quantum dots formed in direct band gap III-V compounds (see Fig. 1.3a). An

electron (or hole) in such systems can be considered as a single particle due to

the large band gaps, which suppress elementary excitations [76]. Controllable

optical properties, discrete energy levels and large dipole moments of quan-

tum dots also make them promising candidates for optically controlled qubit

systems.

4Electron spin decoherence can be due to hyperfine interaction with nuclear spins, local

magnetic field fluctuations, phonon scattering via spin-orbit coupling etc. Spin coherence

time in quantum dots can be several microseconds [75].
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(a) (b)

Figure 1.3: (a) The energy level scheme of a trion state in electron charged

III-V quantum dots. The arrow in a circle designates a hole spin, the other two

arrows stay for electron spins. The dotted oval represents an exciton formed

by the hole and the electron. The red trapezoid represents the trion. CB and

VB are the conduction and valence bands, HH and LH are the heavy and light

hole states, SO is the split-off hole band. (b) Optical selection rules for the

electron-trion transitions by left- (σ+) or right-circularly (σ−) polarized light.

In the left square: Spin is aligned parallel to the light propagation direction.

In the right square: Spin is aligned perpendicular to the light propagation

direction.

The energy levels of electron charged III-V quantum dots are depicted on

the Fig. 1.3a. The top of the valence band and the bottom of the conduction

band have p and s characters correspondingly. The states in the valence band

are split due to a large spin-orbit coupling. The top of the valence band has

J = 3/2, being split by energy about 20-30 meV into two bands with the

projection MJ = ±3/2, called heavy hole states, and MJ = ±1/2, called light

hole states. The state with J = 1/2 is called split-off hole band and is about

0.1-0.5 eV lower than the top of the valence band. Excitation by light leads to

a creation of an exciton, i. e. a hole and an electron, thereby the latter forms

a singlet with the resident electron (see Fig. 1.3a). The quasi-particle, which

consists of the exciton and the additional electron is called a trion. Optical

spin rotation involves the Raman process, which incorporates the creation of

a trion by the absorption of a circularly polarized photon and recombination

back to a single electron state by the emission of a photon. If spin is initially

perpendicular to the propagation direction of a circularly polarized laser pulse,

optical selection rules allow the Raman scattering to the single spin state with

the opposite spin (see Fig. 1.3b).

A quantum computation scheme based on the optical manipulation of elec-

tron spin in quantum dots via the stimulated Raman scattering has been first
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Figure 1.4: Schemes representing the geometries of the experiments of (a)

Berezovsky et al., (b) Press et al. and (c) Greilich et al. The green arrows show

the directions of the applied magnetic fields denoted as B, the yellow arrows

correspond to the light propagation directions, and the bold black arrows show

the directions, in which the spins were initialized, denoted as S0. The dotted

lines show the trajectories of the spin Larmor precessions before the (first)

arrival of the laser pulses: (a) in the xy plane, (b) no precession and (c) in the

yz plane.

proposed in 1999 by Imamoglu et al. [77]. Since then, much theoretical [78–82]

and experimental [83–90] effort has been done before the full control over a

single electron spin state became possible. Up to the present time, the schemes

for the ultrafast optical control over a qubit are being intensively searched for

and many successful implementations of optical qubit manipulations have been

suggested [91–97], some of them are described further.

One of the first achievements of the coherent optical arbitrary rotation of

a spin was demonstrated by Berezovsky et al. in Ref. [91]. The system they

used was charged GaAs interface quantum dots embedded in an optical cavity

[90]. Its ground state is formed by a single electron in the lowest conduction

band level (see Fig. 1.3a). The measurement of a spin state of the system

was performed by the magneto-optical Kerr effect with a probe pulse, which

provided the value of the projection of the spin on the y-axis (see Fig. 1.4a).

The first step for the control was to initialize the electron spin in one

direction. This was completed by optical pumping [98] using a circularly po-

larized pump pulse propagating along the y axis. The pump pulse excited

spin-polarized electrons and holes into the continuum of states above the quan-

tum dot, thereby some of them relaxed back to the ground state with the spin

pointing in the y direction. The magnetic field of 0.7 T, which was applied in

the z direction, caused the spin precession around the z axis after the accom-

plishment of optical pumping.

At some time tc after the pump pulse, the control pulse5 arrived. The

5A pulse, which is used to manipulate a spin state, is called control pulse. Sometimes, it
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1.2. Ultrafast optical control of spin based qubits

control pulse was circularly polarized propagating in the y direction and of

30 ps duration, corresponding to the spectral width of 0.2 meV. This pulse

excited the lowest-energy interband transition to the trion state, consisting of

two electrons in a singlet state and a heavy hole (see Fig. 1.3a). The detun-

ing of the control pulse from the resonance was chosen in the range between

approximately 1.5 and 5 meV, so that the transitions could drive the system

back to the ground state leaving the excited states not populated. Although

the electron was brought back to the ground state after the transitions had

taken place, its spin state was changed. This phenomenon was described by

the authors as the generation of the effective magnetic field along the y axis

during the presence of the pulse due to the optical Stark effect. Namely, as the

rotation of the spin around the total magnetic field, which is the sum of the

effective field and the applied field, during the excitation. Although the effect

of the control pulse was described in terms of the optical Stark effect6, the

authors commented that the phenomenon is practically the stimulated Raman

scattering.

Thus, the spin operation was performed as follows. First, the initialized

spin precessed around the magnetic field for the time tc. Thus, tc determined

the position of the spin at the moment, when the control pulse arrived. The

control pulse changed the spin orientation, thereby the modified spin position

depended on the spin orientation at the time tc. After the action of the control

pulse, the spin continued the Larmor precession. Therefore, the phase of the

final spin precession could be controlled by changing the time tc. The next

demonstration of the capability of the spin control was performed with the

control pulse always arriving at the same time tc = 1.3 ns. The probe pulse

measured the spin position at the time tprobe = 2.5 ns. It was shown that this

position was determined by the detuning from the resonance and the intensity

of the control pulse.

Thereby, the authors were able to achieve the coherent electron spin ro-

tations through arbitrary angles up to π radians at nanosecond time scales.

This was attained by changing the time of the control pulse arrival or varying

its detuning and intensity. However, only at most 200 spin operations during

the coherence time could be performed using the set-up and samples applied

in the experiment.

is called tipping or rotation pulse.
6Optical Stark effect is a light-induced shift of energy levels. In some references, the effect

of Raman transitions, resulting in the change of a spin state, are explained by the optical

Stark effect. However, according to my opinion, spin-flip stimulated Raman scattering is

more suitable definition, since it reveals the mechanism of the process.
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Figure 1.5: The figure is taken from Ref. [92]. The schemes used by Press et

al. to initialize, control and measure the spin. (a) The four-level system and

the spin rotation scheme. (b) The spin initialization and measurement scheme

performed by optical pumping. A laser excites a transition between the | ↓〉
and | ↑↓⇓〉 states. The spontaneous emission, allowed to both states | ↓〉 and
| ↑〉, leads to the initialization of the | ↑〉 state (see Refs. [98, 99] for details).

The measurement is performed by the detection of the spontaneous emission

to the | ↑〉 state after the optical pumping from the | ↓〉 to the | ↑↓⇓〉 state. ΩH
and ΩV are the Rabi frequencies driven by the orthogonal linear polarizations

of electric field π/2 out of phase with each other, denoted as H and V . Ωeff is

the effective Rabi frequency between the states | ↓〉 and | ↑〉. Γ is trion’s total

spontaneous emission rate, Ωp is the transition rate between | ↓〉 and | ↑↓⇓〉.

The next successful experiment demonstrating the complete coherent con-

trol over an initialized electron spin state was implemented by Press et al.

in Ref. [92]. This scheme was applied to the spin in doped InGaAs quantum

dots [100]. The external magnetic field B = 7 T in their geometry was directed

along the z axis, causing the Zeeman splitting of the ground electron spin states

denoted as | ↑〉 and | ↓〉 of approximately 1 meV (Fig. 1.5,a). Two trion states

were used as the intermediate states in the spin manipulation scheme. These

states denoted as | ↑↓⇓〉 and | ↑↓⇑〉 consisted of a pair of electrons and an

unpaired heavy hole and were the lowest energy interband states (Fig. 1.3a).

The initialization and measurement of the spin state were achieved by optical

pumping (Fig. 1.5,b).

The ground state was manipulated by a single circularly polarized con-

trol pulse, propagating in the x direction perpendicular to the magnetic field

(Fig. 1.4b). The pulse was of 4 ps duration (corresponding to the spectral

width of 0.5 meV) and had the large detuning ∆ (approximately 1 meV) from

the excited states. The action of the control pulse triggered the stimulated Ra-
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man scattering process, which coherently changed the spin between | ↑〉 and

| ↓〉, remaining the trion states unpopulated. The Rabi oscillation between the

| ↑〉 and | ↓〉 states was equal to the spin rotation around the x axis. Up to six

Rabi oscillations could be observed in the experiment increasing the power of

the control pulse.

In order to obtain the complete SU(2) control7 over the qubit state, three

rotations around x, z and x axes were applied. The two rotations around the x

axis by desired angles were obtained by adjusting the intensity of two control

pulses, which were applied with a time delay between each other. The rotation

around the z axis by arbitrary angles was accomplished by enabling the Larmor

precession during the time delay, which could be tuned. This optical manip-

ulation scheme allowed to accomplish a single-qubit gate operation within a

single Larmor period of 38 ps. Thus, it was estimated that 105 operations were

possible during the coherence time.

The first difference of the set-up of Press et al. compared to that of Bere-

zovsky et al. was that much higher magnetic field was applied. This led to

the faster spin dynamics due to the Larmor precession, however, consider-

ably affecting the spin rotation during the action of the control pulses. The

next difference was that two pulses instead of one were used, and the Larmor

precession was prompted only after the rotation of the spin by the first pulse.

Later, the same method as implemented by Press et al. in Ref. [92] was

applied by Greve et al. to manipulate a quantum dot hole qubit, showing

the robustness of hole spins for ultrafast optical control techniques [96]. The

authors demonstrated the reduced hyperfine interaction of quantum dot hole

spins with nuclear spins, which limits the coherence times of electron spin

qubits.

Greilich et al. in Ref. [94] realized the ultrafast optical control of the spins

in the ensemble of (In,Ga)As quantum dots, each containing a single electron

on average [101]. The ensemble of quantum dots was chosen to increase the

optical coupling compared to that of a single quantum dot. Previously, it

was demonstrated that the spin ensemble confined in singly charged quantum

dots can be driven into a single mode of precession about a low magnetic

field (<0.6 T) [102]. Therefore, the total spin of the ensemble can be treated

equally to a single spin, if the external magnetic field does not exceed 0.6 T. In

the experiment by Greilich et al., the amplitude of the applied magnetic field

was 0.3 T (corresponding to the Zeeman splitting of 0.04 meV). The relatively

low amplitude of the field also helped to minimize the effect of the Larmor

precession during the presence of the control pulse.

7Single qubit transformations are described by SU(2) matrices.
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Circularly polarized laser pulses of 1.5 ps duration (≈1.5 meV spectral

width) propagating in the z direction were used to control the spin state. The

pulses were tuned in the vicinity of the trion | ↑↓⇑〉 resonance. Thus, the

optical manipulation scheme effectively included only three levels: the ground

state with the spin split by the magnetic field in the x direction and the excited

trion state | ↑↓⇑〉. The spins were initialized in the z direction perpendicular

to the applied magnetic field using the optical pumping to the trion state. The

spin polarization along the z axis was measured by the ellipticity of a probe

pulse.

Due to the resonance excitation, the conditions had to be found, when the

excited level remained unpopulated, but the transitions through the excited

state back to the ground state had taken place. For this goal, the intensity of

the control laser pulse was varied and the time evolution of the z projection of

the total spin of the ensemble was measured. The intensity of the pulse, which

gave the maximal amplitude of the spin precessions, was chosen.

Since the spin was initialized in the z direction, which was perpendicular to

the magnetic field, it started to precess in the y-z plane (see Fig. 1.4c). First,

the authors were applying the control pulse with zero detuning at different

times tc after the spin initialization. They showed that this resulted in the spin

rotation by π degrees every time except when the spin was aligned parallel to

the control pulse propagation direction at the time tc.

The next demonstration was with the control pulse arriving at the moment

when initialized spin was rotated to the −y direction by the magnetic field.

Thereby, the maximal effect on the spin state could be gained since the spin

orientation was perpendicular to the control pulse propagation direction. The

rotations around the z-axis by any angles from π to 0 were achieved by the

detuning from the resonance from 0 to 3.08 meV as theoretically calculated by

Refs. 78, 79.

And finally, they could observe the following effect. If a pulse applied at

time tc rotated spins by an angle π, the increase of the signal from the spin

was observed around the time 2tc. This phenomenon is called a spin echo [103]

and is due to the refocusing of inhomogeneously precessing spins. The spin

echo effect allows to increase the dephasing time of a spin. Later, Press et al.

implemented the optically driven spin-echo effect to a single electron spin 8 in

InAs quantum dot, which suppressed the nuclear spin noise, and increased the

decoherence time from nanoseconds to microseconds [104].

Electron and hole spins in quantum dots are not the only systems con-

sidered for implementations of ultrafast optical qubit control. The other sys-

8The dephasing of a single electron spin is due to nuclear spins.
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tems include electron spins in quantum wells [105–107], magnetic dopants in

QDs [108, 109] and nitrogen-vacancy centers in diamond [110, 111].

The next step towards the creation of a quantum processor is the realiza-

tion of quantum entanglement between several qubits. Much effort is being

done now to design multi-spin entangled states and achieve the control over

them [74]. Ultrafast optical techniques make it possible to address a single

quantum dot and provide the opportunities to manipulate interacting spin

systems individually [112–115].

Although much progress has been made towards the ultrafast optical qubit

control, the main obstacle is the short coherence times of a single spin or spin

system, which limit the number of gate operations. Usually, picosecond laser

pulses are used to perform spin state manipulations. The application of even

shorter laser pulses may improve the situation, but it’s implementation requires

the understanding of the light-matter interactions at femtosecond time scales.

The theoretical investigation of ultrafast optical manipulation of a qubit is

not the main topic of this thesis, however the results presented here are also

relevant for this field. The thesis is mainly concentrated on the study of the

stimulated Raman scattering process at femtosecond time scales, which is the

origin of the inverse Faraday effect [35]. At the same time, this process is

used for the ultrafast qubit control in the most optical manipulation schemes.

The conclusions concerning the interaction of femtosecond laser light with

a magnetic state of a medium via the stimulated Raman scattering process

presented in this work are meaningful for implementing faster qubit optical

manipulation schemes. The insight to the coupling of electron interactions to

the femtosecond laser light can be also helpful for the developing of new ideas

of ultrafast optical control of entanglement between several spins.

1.3 Scope of the thesis

Chapter 2 of the thesis starts with the introduction to the classical theory of the

inverse Faraday effect. This theory will be reviewed in view of subpicosecond

laser excitation. It will be shown which assumptions of the theory cannot be

applied to describe magnetization dynamics at ultrafast time scales. Further,

the introduction to our approach to describe the time evolution of magnetiza-

tion without approximations on the pulse duration using the time-dependent

Schrödinger equation is given. The detailed comparison of this approach with

the classical theory is performed, demonstrating the discrepancies produced by

the latter at the regime of subpicosecond excitation. Chapter 3 discusses the

optical mechanism responsible for the ultrafast IFE and the spin-flip stimu-
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lated Raman scattering. The role of spin-orbit coupling is studied, particularly

in the regime when its value is on the order of the spectral width of excitation.

The dependence of the value of the effect on laser pulse properties is investi-

gated. The Chapter 4 introduces a momentum operator, which provides the

equations of motion of magnetic vector components, which change in time due

to the stimulated Raman process. The laser driven launching of a spin Lar-

mor precession due to an external magnetic field is studied in Chapter 5. It

is shown that the spin dynamics during the excitation determines the final

magnetic state after it. Chapter 6 discusses the influence of a crystal field

interaction on the value of IFE. A method to model subpicosecond magnetiza-

tion dynamics induced by the ultrafast IFE in magnetic crystals is provided.

The mechanism of the creation of a magnetic moment in an antiferromagnet

is explained.
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The theory of the inverse

Faraday effect

2.1 The phenomenological theory of the in-

verse Faraday effect

The IFE was first theoretically predicted by Pitaevskii in 1960 [32] from a pure

phenomenological ansatz on the basis of a thermodynamic potential describing

the internal energy of a system. Pitaevskii considered a nonmagnetic medium

placed in a strong constant magnetic field H and a weak electric field E varying

with a frequency ω0 at which the medium is transparent. The author showed

that if the entropy and the temperature of a medium are constant, then the

variation of the free energy δF is given by the integral over the volume V

δF =

∫ (
δF (E = 0,H)− 1

16π
E∗

0kE0lδǫkl

)
dV, (2.1)

where F (E,H) is the density of the free energy, k and l are x, y or z. E0 is

the amplitude of the electric field:

E =
1

2

(
E0e

−iω0t + E∗
0e
iω0t
)
. (2.2)

ǫ is the dielectric tensor, which in the absence of absorption obtains the form

[116]

ǫ = ǫ1 + ǫ2 + ǫ3, (2.3)
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where

ǫ1 =




ǫ01 0 0

0 ǫ01 0

0 0 ǫ01



 , ǫ2 = ǫ02




H2
x HxHy HxHz

HxHy H2
y HyHz

HxHz HyHz H2
z



 , (2.4)

ǫ3 = iǫ03




0 Hz −Hy

−Hz 0 Hx

Hy −Hx 0


 ,

Hx, Hy and Hz are the components of an external magnetic field, ǫ01(2,3) are

constants, which depend on the laser frequency and the amplitude of the ex-

ternal field.

Applying the thermodynamic equation

B = 4π
∂F

∂H
, (2.5)

together with the relations

4π
∂F0

∂H
= H, F (0,H) = F (0, 0) +

H2

8π
(2.6)

the author obtained

B = H+
1

4
E∗

0kE0l
∂ǫkl
∂H

. (2.7)

The induced magnetic field B is nonzero even if an external magnetic field H

is absent

B(H = 0) =
1

4
E∗

0kE0l
∂ǫkl
∂H

∣∣∣∣
H=0

, (2.8)

since the third part of the dielectric tensor gives a contribution into B at zero

external magnetic field

∂ǫ1
∂H

= 0,
∂ǫ2
∂H

∣∣∣∣
H=0

= 0,
∂ǫ3
∂H

∣∣∣∣
H=0

6= 0. (2.9)

Multiplying ∂ǫ3kl/∂H by the components of the electric field, one obtains

Bx =
iǫ03
4
E∗

0kE0l
∂ǫ3kl
∂Hx

=
iǫ03
4

(E∗
0yE0z − E∗

0zE0y)

By =
iǫ03
4
E∗

0kE0l
∂ǫ3kl
∂Hy

=
iǫ03
4

(E∗
0zE0x −E∗

0xE0z) (2.10)

Bz =
iǫ03
4
E∗

0kE0l
∂ǫ3kl
∂Hz

=
iǫ03
4

(E∗
0xE0y −E∗

0yE0x),
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2.1. The phenomenological theory of the inverse Faraday effect

which results in a well-known classical equation of the inverse Faraday effect

M(H = 0) =
B

4π
=
iǫ03
16π

E∗
0 × E0 (2.11)

Thus, Pitaevskii showed that a varying electric field, which is not linearly

polarized, can create in a medium an average magnetic moment proportional

to the intensity (see Eq. (B.4)) of the electric field E2. There are two essential

points in these considerations. First, the induced magnetic moment can be

present only during the action of the electric field, otherwise B = H (since the

medium is considered to be nonmagnetic). Second, the expression for the free

energy (2.1) and, thus, the relations that followed are correct, if the medium

is in thermodynamic equilibrium.

Pershan in Ref. [117] in 1962 also made a conclusion that magnetization

can be produced by a circularly polarized optical field. Pershan derived the

induced magnetization from a potential function1, which he obtained using the

similar considerations as in Ref. [32]. He introduced the potential function in

the case of the electric field propagating in the z direction as

F = χHz(ERE
∗
R −ELE

∗
L) = iχHz(E0xE

∗
0y − E0yE

∗
0x), (2.12)

ER(L) = (E0x∓ iE0y)/
√
2 are the amplitudes of right (left) circularly polarized

components of light, χ is a constant characteristic of the material. It directly

follows that the effect is maximal for circularly polarized light, and is zero,

when |ER|2 = |EL|2, i. e. if light is linearly polarized.

The authors showed that the same function is responsible for the change of

optical dielectric constants for right and left circularly polarized light (denoted

as ∆ǫR and ∆ǫL respectively) via the derivatives

∆ǫR = − ∂2F

∂ER∂E∗
R

= −χHz, (2.13)

∆ǫL = − ∂2F

∂EL∂E∗
L

= χHz,

which results in the (direct) Faraday effect.

The relation between the Faraday effect and the IFE was explicitly dis-

cussed by van der Ziel et al. in Ref. [36]2. The Faraday effect, which is the

rotation of polarization of linearly polarized light, which propagates through

1Pitaevskii used the term “free energy density” for the same function.
2As far as I know, the term “inverse Faraday effect” was first used by van der Ziel et al.

in Ref. [36].

29



Chapter 2. The theory of the inverse Faraday effect

a magnetic medium, is given by an angle θ/d = V/H , d is the propagation

length. V is called “Verdet constant”, and is related to the constant χ from

Eq. (2.12) by

V = −4π2χ

n0λ0
, (2.14)

n0 is the refraction index in the absence of an external field, λ0 is the wave-

length of the light in the vacuum. The induced magnetization due to the IFE

in zero applied magnetic field, which is given by the relation3

Mz = − ∂F

∂Hz
= −χ(ERE∗

R − ELE
∗
L), (2.15)

can be expressed by

Mz =
λ0V
4π2

(ERE
∗
R − ELE

∗
L). (2.16)

Thereby, the induced magnetization by circularly polarized light and the Fara-

day rotation are determined by the same constant V. Thus, the two effects

were related to each other. The Eqs. (2.7) and (2.15) can be generalized by

the expression

M = −iχE∗
0 × E0. (2.17)

In the same article, van der Ziel et al. [36] reported the first experimental

observation of the effect. The experiments were done with several types of

samples: Eu+2 : CaF2 crystals, diamagnetic glasses, and organic and inorganic

liquids. The samples were irradiated by a Q-switched ruby laser with the

energy 0.1 J and peak laser intensity 107 W/cm2. The pulses were circularly

polarized and had 30 nanoseconds duration at the full width at half-maximum

(FWHM). The measurements were done at zero applied magnetic field.

The authors showed that the magnetization was induced in the samples

during the action of circularly polarized light. It was proportional to the light

intensity and changed the sign, when the light polarization switched from right

to left circular. Furthermore, they demonstrated that the Verdet constant

obtained by Eq. (2.16) obeys the general relation V = C0 + C1/T (C0 and

C1 are constants, and T is a sample temperature), which was derived for the

Faraday effect [118].

3Note that constants entering the expressions for the induced magnetization derived by

Pitaevskii (Eq. 2.11) and Pershan et al. are related by χ = −ǫ03/(16π).
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2.2. Quantum mechanical description at long time scales

2.2 Quantummechanical description of the in-

verse Faraday effect at long time scales

The quantum mechanical description of the IFE was provided by Pershan et al.

in Ref. [35]. They considered the perturbation by light V̂ (t) = −d·E = d·A′/c,
where d is the dipole moment of the system, which can be represented as

V̂ (t) = v(t)eiω0t + v∗(t)e−iω0t, (2.18)

where ω0 is the frequency of the optical field. The wave function of the system

due to the action of the electric field E(t) was found with the time-dependent

Schödinger equation

i
∂Ψ(t)

∂t
= [H0 + V̂ (t)]Ψ(t), (2.19)

the general solution of which is (see Appendix A)

Ψ(t) =e−iH0t

(
Ψ0 − i

∫ t

−∞
dt′ eiH0t′ V̂ e−iH0t′Ψ0 (2.20)

−
∫ t

−∞
dt′ eiH0t′ V̂ e−iH0t′

∫ t′

−∞
dt′′ eiH0t′′ V̂ e−iH0t′′Ψ0 + . . .

)
.

H0 is the Hamiltonian of the system in the absence of the optical field

H0 =
∑

α

p2
α/2 + Vint. (2.21)

pα is the momentum of an electron, Vint is the sum of the kinetic energy of nu-

clei, the interaction energy between electrons and nuclei and mutual Coulomb

energy of the electrons and nuclei. The interactions, which are important for

effects on the spin of the electrons, such as the spin-orbit- and Zeeman inter-

actions, must be also included to Vint. The summation is over all electrons in

the system.

Pershan introduced an effective Hamiltonian Heff(t), which connects the

eigenstates |i〉 and |f〉 belonging to the same ground state manifold, by the

relation

〈i|1−i
∫ t

−∞
Heff(t

′)dt′|f〉 = (2.22)

= 〈i|1− i

∫ t

−∞
V (t′)dt′ −

∫ t

−∞
V (t′)dt′

∫ t′

−∞
V (t′′)dt′′|f〉,
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Chapter 2. The theory of the inverse Faraday effect

where V (t) = eiH0tV̂ (t)e−iH0t. The term “ground state manifold” refers to a

system’s ground state, which is energetically split by magnetic excitations into

levels having different magnetic signatures. The perturbation is of the first

order of the inverse light velocity 1/c: V̂ (t) = −d · E = d ·A′/c, where A is

the vector potential. Taking the terms up to the second order of 1/c in the

expansion (2.20) and with 〈i|V (t)|f〉 = 0, the authors obtained

Heff(t)if = 〈f |Heff(t)|i〉 = −i
∑

j

〈f |V (t)|j〉
∫ t

−∞
〈j|V (t′)|i〉 dt′, (2.23)

= −i
∑

j

eiωjf t〈f |V (t)|j〉
∫ t

−∞
dt′eiωijt

′〈j|V (t′)|i〉

where the summation is over all possible excited states j, ωmn = εn−εm, where
εm(n) is the energy of a state m(n). Thus, the effective Hamiltonian Heff(t)if is

defined by the transition amplitudes of Raman scattering from an initial state

i to final states f .

At this point, the authors made an assumption that the amplitude of the

perturbation, v(t), varies on a characteristic time scale T that is much larger

then the inverse of the detuning 1/|ω0 ± ωij| = 1/∆ω. For laser pulses of

several tens of nanosecond duration, this assumption is quite reasonable, since

1/T in energy units is of the order of 10−2 µeV . Therefore, the approximation

∫ t

−∞
v(t′)ei(ωij±ω0)t′dt′ ≈ v(t)

ei(ωij±ω0)t

i(ωij ± ω0)
(2.24)

becomes valid except for resonant transitions ±ω0 ≈ ωij. This leads to

∫ t

−∞
eiωijt′V (t′)dt′ = v(t)

ei(ωij+ω0)t

i(ωij + ω0)
+ v∗(t)

ei(ωij−ω0)t

i(ωij − ω0)
. (2.25)

Substituting Eq. (2.25) to (2.23), the authors found that the effective

Hamiltonian can be expressed as

Heff(t)if = −i
∑

j

[
vij(t)v

∗
jf(t)

ωij + ω0
+
vjf(t)v

∗
ij(t)

ωij − ω0

]
eiωif t, (2.26)

where vnm(t) = 〈m|v(t)|n〉. The terms vijvjfe
i(±2ω0+ωif )t were omitted here,

since they correspond to a second harmonic process. They connect an initial

state to final states which are energetically widely separated from the initial

state and need not to be considered here.
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2.2. Quantum mechanical description at long time scales

If v(t) = −d · E0, then it is easy to show that the effective Hamiltonian

becomes

Heff(t)if = −
∑

kl

eiωif tχklifE
∗
0kE0l, (2.27)

where k and l stay for x, y or z, and χklif is the polarizability tensor [119]

χklif =
∑

j

[
(dl)ij(dk)

∗
jf

ωij + ω0
+

(dk)
∗
ij(dl)jf

ωij − ω0

]
, (2.28)

(dk(l))mn is the dipole matrix element between states m and n for a k(l) vector

component of the electric field: (dk(l))mn = 〈n|dk(l)|m〉. The polarizability

tensor is connected with the dielectric tensor ǫkl by the density matrix ρif of

the electron system
(ǫ− 1)kl

4π
=
∑

if

χklifρif . (2.29)

The density matrix assures that the transitions from a state i to a state f

occur with the same probability as from f to i [120]. At the same time (see

Eq. 2.13),
(ǫ− 1)kl

4π
= − ∂F

∂E∗
0k∂E0l

. (2.30)

The effective Hamiltonian Heff(t)if can now be related to the potential

function (2.12) by

F =
∑

if

e−iωif tHeff(t)ifρif , (2.31)

=
∑

if,kl

χklifE0k(t)
∗E0l(t)ρif . (2.32)

The meaning of Eq. (2.31) is the following. The effective Hamiltonian de-

scribes the transitions in a system triggered by the laser light. Namely, the

ones from the initial ground state i via the virtual excited states j to final

states f belonging to the ground state multiplet. The potential function is

the thermal average of the effective Hamiltonian Heff. It characterizes the free

energy produced in the system by light. That means, the potential function F

describes a new thermal equilibrium, which is produced by the laser excitation,

which constantly brings the system to a new state.

Finally, the induced magnetization M(t) is connected to the effective

Hamiltonian Heff by the thermodynamic relation M = −∂F/∂H (Eq. 2.15)

M(t) =
∑

kl

E∗
0k(t)E0l(t)

4π

∂ǫkl
∂H

. (2.33)
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Pershan et al. underlined that in order to apply the thermodynamic relation

(2.15) to the induced magnetization, it should be satisfied that E0(t)E
∗
0(t)

changes slowly compared to any relaxation times of the system. Thus,

Eq. (2.15) describes the magnetization in the new equilibrium, which is created

during the presence of a slowly varying laser excitation.

To sum up, four conditions have to be satisfied for the validity of Eq. 2.33:

1) the intensity of the electric field varies slowly compared to any thermal

relaxation times of the system. In this case, the system has enough time

to relax to the new conditions produced by an optical field. A new quasi

stationary magnetic state is created due to the interaction with the laser light;

2) the intensity of the electric field varies on a characteristic time scale

that is much larger than the inverse of the detuning from a resonance (in time

units);

3) the frequency of the excitation is far from any resonance in the system;

4) Eq. 2.33 is derived for the magnetization induced during the presence of

light.

2.3 The theory of the inverse Faraday effect

at subpicosecond time scales

The results of this Section are published in Ref. [121] and are reused with the

permission from Daria Popova, Andreas Bringer and Stefan Blügel.

2.3.1 The stationary and ultrafast inverse Faraday ef-

fect

With the advent of ultrafast pump-probe experiments the experimental con-

ditions today became quite different from the ones realized in the past. First,

the time scales are totaly different. The duration of the laser pulses used

in the experiment of van der Ziel et al. [36] were 30 nanoseconds. Thereby,

laser pulses used in modern experiments are of several tens of femtoseconds

duration. That is about six orders of magnitude shorter than in 1965. Laser

fluences of pulses applied today are also much higher. In the experiment of

Kimel et al. [9] the fluence (see Eq. (B.3)) was about 1011 W/cm2, which is

four orders of magnitude higher than that in Ref. [36]. Another essential dif-

ference lies in the observation of the magnetization dynamics. Ziel et al. [36]

measured the magnetization during the time the pulses were present and the

variation of magnetization was zero after the action of the pulse. However,
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2.3. The theory of the inverse Faraday effect at subpicosecond time scales

the magnetization dynamics after the action of a laser field is of interest and

requires an interpretation nowadays, which is opposite to the essence of the

studies in 1960-ies.

Nevertheless, the relation M = −iχE∗
0 ×E0 is still applied to describe the

magnetization dynamics induced by ultrafast laser pulses. However, let me

revise the criteria of this equation (listed above) for an excitation by a laser

pulse of 100 fs duration:

Criteria 1) is not satisfied. Moreover, for such pulse duration, an oppo-

site extreme case is valid: the pulse duration is much shorter than thermal

relaxation times;

2) is not satisfied. 1/T in energy units is about 10 meV, which is on the

order of or even larger than a detuning ∆ω;

3) is satisfied in some experiments (but not necessarily). However, the

condition ∆ω & 1/T instead of ∆ω ≫ 1/T is fulfilled even for off-resonance

excitations;

4) is not satisfied for magnetization dynamics after the excitation, which

is usually studied nowadays.

Thus, the assumptions used to derive the effective Hamiltonian and induced

magnetization in Refs. [32,35,36,117] are not valid for the novel experimental

conditions. This means, that the mechanisms of the generation of magnetiza-

tion during the presence of a stationary electric field are different from that

responsible for the modern experimental observations of coherent magnetic

precessions after the excitation by subpicosecond intense laser pulses. I will

refer to the former process as “the stationary IFE”, and to the latter one as

“the ultrafast IFE”.

An experimental evidence that magnetization dynamics predicted by the

thermodynamical treatment of the IFE disagrees with that observed on sub-

picosecond time scales was provided by Reid et al. [40]. They compared the

initial amplitudes of the observed oscillations, excited by a light pulse of 50

femtosecond length, with static measurements of the materials Verdet con-

stant, which is proportional to χ, over a range of temperatures and found that

the two have very different temperature dependencies. They also obtained

that the frequency of the oscillations are 30 times higher than that expected

for magnetization precessing due to an action of an effective magnetic field,

generated by a laser pulse.

This experiment demonstrated that the thermodynamic approach which

works at the nanosecond region is not valid for the description of magnetization

dynamics at subpicosecond time scales. Therefore, an interpretation different

from the classical one is required to explain the novel experiments on the
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Chapter 2. The theory of the inverse Faraday effect

ultrafast IFE. The aim of this work is to reconsider the theory of Pershan et

al. in Ref. [35] and provide an extension of the theory, which can be applicable

for magnetization dynamics at subpicosecond time scales. The understanding

of the ultrafast mechanisms, which are responsible for the ultrafast IFE, is

essential for the ability to manipulate spin precessions, which arise after the

action of circularly-polarized light pulse on a system.

It will be shown further in this Chapter which assumptions used to derive

the induced magnetization due to the stationary IFE lead to incorrect results

if applied to magnetization dynamics induced by subpicosecond excitation. A

new approach applicable for the description of the ultrafast IFE, which does

not rely on these assumptions, will be provided. It will be discussed that

the ultrafast IFE should be interpreted as the induced dynamics of a system

brought to a new magnetic state by optical transitions.

2.3.2 Effective Hamiltonian

Let me first consider the condition of the validity of the classical relations of

the IFE that the intensity of the electric field varies on a characteristic time

scale that is much larger than the inverse of the detuning from a resonance (in

time units): T ≫ 1/|ωij − ω0|. It means that the laser field can be considered

as stationary, which was the condition considered by Pershan et al. [35]. This

assumption resulted in approximation (2.24). However, the ultrafast magneti-

zation experiments are carried out with laser pulses of femtosecond duration,

and this means that T ∼ 1/|ωij − ω0|. The change of a pulse amplitude in

time cannot be considered as constant for such pulses.

This difference can be illustrated taking the perturbation by a circularly

polarized Gaussian-shaped pulse, v(t) = −d · n E e−t2/T 2
. E is the time inde-

pendent part of the amplitude of the electric field, n is the vector perpendicular

to the direction of propagation (E0 = n E e−t2/T 2
). The left plot on Fig. 2.1

exhibits the shape of a pulse for which the approximation (2.24) holds. During

the time considered, the amplitude of v(t) does not change significantly and

the time integral over the field is determined by the periodic function e±iω0t.

In the right plot, the constant T that characterizes the pulse width is 20 times

shorter and the variation of v(t) is important. When integrating over the pulse,

the factor e−t
2/T 2

cannot be omitted.

The exact solution of the integral in Eq. (2.25) for the Gaussian-shaped
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2.3. The theory of the inverse Faraday effect at subpicosecond time scales

Figure 2.1: Left: Pulse with amplitude that does not change noticeably in time.

Right: Gaussian-shaped pulse. Time T characterizing the pulse duration is a

factor 20 times shorter for the right pulse as compared to the left pulse.

laser pulse is given by (see Appendix A)

∫ t

−∞
eiωijt′ V̄ (t′)dt′ = −d · n E T

√
π

2
× (2.34)

×
[
e−

(T(ωij+ω0))
2

4

(
1 + erf

(
t

T
− i

2
T (ωij + ω0)

))

+ e−
(T(ωij−ω0))

2

4

(
1 + erf

(
t

T
− i

2
T (ωij − ω0)

))]
.

Therefore, the exact expression (i. e. not applying the assumption (2.25)) for

the effective Hamiltonian according to Eq. (2.23) is

〈f |Heff(t)|i〉 =− i
√
πE2T

∑

j

dijdjfe
− t2

T2 eiωjf t cosω0t×

×
[
e−

(T(ωij+ω0))
2

4 erfc

(
i

2
T (ωij + ω0)−

t

T

)
+ (2.35)

e−
(T(ωij−ω0))

2

4 erfc

(
i

2
T (ωij − ω0)−

t

T

)]
.

The function erfc(z) (z = |z| eiθ is a complex number) approaches asymp-

totically e−z
2
/
√
πz for large complex arguments, |z| → ∞, and a polar angle

|θ| < 3π/4 [126]. Substituting this asymptote into Eq. (2.35) one obtains ex-

actly Eq. (2.26). Thus, the range of the validity of Eq. (2.26) can be determined

precisely. From the condition |θ| < 3π/4 it follows that T |ωij±ω0| > 2t/T , and

the condition T · |ωij±ω0| ≫ 1 is necessary for |z| → ∞. Therefore, Eq. (2.26)

is certainly applicable to the experiments of Ziel et al. [36], when the pulse
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Figure 2.2: The three-level system investigated. The laser pulse causes transi-

tions from the initial state |i〉 to the intermediate |j〉 and then to the final one

|f〉, with a magnetic state different from the one of the initial state. Due to

the spin-orbit coupling of |j〉, spin is influenced. The sign σ+ represents the

absorption of left-polarized photons, σ− denotes the emission of left-polarized

photons.

durations were nanoseconds. But it is not valid for pulses of subpicosecond

duration and times larger than the pulse duration.

In order to obtain the effective Hamiltonian for a system, the transition

amplitudes between the initial, intermediate, and final states should be calcu-

lated and summed. Thus, the simplest possible system, for which the effective

Hamiltonian can be calculated is a three-level system as depicted in Fig. 2.2.

Due to some internal or external magnetic field all spins in the system are

aligned in one direction. In order to produce magnetic changes in the system,

it should be excited with circularly-polarized light propagating in a direction,

not parallel to the initial spins alignment. If the light propagation direction is

chosen as the axis of quantization, the ground state is a mixture of spin-up and

-down states. The intermediate states of the system mix the orbital momen-

tum and spin, which results in final states having different magnetic quantum

numbers from the initial ones. This means that the spin-orbit coupling split

the excited states with different combinations of |ML + 1, ↑〉 and |ML + 1, ↓〉
(ML is the projection of the orbital moment of the initial state). Selection

rules and dipole matrix elements for the transition with circularly-polarized

light to the excited state are different for each spin component [35]. Thereby,

the spin of the electron is influenced by the virtual state. After the emission

of a photon, the electron arrives to a state with spin components different

from the initial ones. This mechanism will be discussed in detail in the next

Chapter.

This three-level system will be used to demonstrate the discrepancies in de-

scribing the subpicosecond laser excitation to obtain the effective Hamiltonian

and to derive the induced magnetization. Although, the system is far from
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Figure 2.3: (a) Time evolution of the amplitude of the effective Hamiltonian

(2.26) at different laser frequencies. (b) The time evolution of the amplitude

of the effective Hamiltonian (2.35) at the laser frequency ω0 = 9.7 eV.

a realistic one, the results of such comparison are general, and the temporal

behavior of the functions presented further would be similar for a many levels

system.

First, the time evolutions of the amplitudes of both effective Hamiltonians

(2.26) and (2.35) are calculated for the excitation by a Gaussian-shaped laser

pulse that is 100 fs long (T = 10−13 sec). The results are plotted in Fig. 2.3(a)

and (b), respectively, in units of energy ξ = E2dijdjfT . The amplitude can

be estimated with the following reasonable assumptions: if the dipole matrix

elements are of the order of 1 a.u. (≈ 53 pm) and the electric field amplitude

is about 107 V/m, which is a typical value for laser fluences of 1011 W/cm2,

then ξ ≈ 10−4 eV.

When the excitation frequency is off-resonance, Fig. 2.3(a) shows that the

amplitudes of function (2.26) reproduce the typical behavior of transition am-

plitudes. The maximum increases, when the excitation frequency is closer to

the resonance. At resonance the function (2.26) simply diverges. It is indi-

cated in Fig. 2.3(a) by a curve taken with a small detuning off resonance:

ω0 − ωij = 10−6 eV. This divergence is a manifestation of the importance of

the assumption of Pershan et al.’s [35] that the excitation frequency must be

significantly away from resonances, |ω0 ± ωij| ≫ 1/T .

In Fig. 2.3(b) we depicted the action of the effective Hamiltonian (2.35)

only for one excitation frequency namely ω0 = 9.7 eV, because plots of close-
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Figure 2.4: Time evolutions of the amplitude of both effective Hamiltonians

(2.26) (dashed red) and (2.35) (solid blue) at T = 10−12 sec and at the laser

frequency ω0 = 9.7 eV. On this plot the unit ξ is rescaled according to the

increased T .

by frequencies overlap in a way that cannot be graphically resolved. The

functions at the frequencies ω0 = 9.85 eV and ω0 = 10 eV are very similar, the

height of the maximum almost does not change, only the positions of the local

maxima are different. The amplitudes of Eq. (2.35) are oscillating functions

consistent with the presence of the term cosω0t.

From the plots one can see that at the frequency ω0 = 9.7 eV the amplitude

of the function (2.26) is one order of magnitude smaller than the one of (2.35).

Furthermore, the former function is smooth, while the latter is oscillating. The

completely different behavior of both functions arises from the fact that the

validity condition of the approximation (2.24) is not satisfied for the considered

laser pulse, since T (ωij − ω0) ≈ 10 for the off-resonance pulses and ≈ 10−4 for

the resonance pulse. The maximum of the function (2.35) is approximately

proportional to T , while the one of (2.26) is determined by 2ω0/|ω2
ij − ω2

0|,
leading to the factor of 10 difference between the amplitudes.

Though both functions differ significantly under the chosen conditions, they

approach each other with the increase of T . Fig. 2.4 shows both functions for

ω0 = 9.7 eV, when T is one order of magnitude larger. The oscillations of

the function (2.35) still remain, because the terms vijvjfe
i(±2ω0+ωif )t were not

eliminated in Eq. (2.35).

2.3.3 Induced magnetization

Pershan et al. [35] connected the induced magnetization to the effective Hamil-

tonian via the derivative of the potential function (2.31) with respect to an
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external magnetic field H (see Eq. 2.15). Thus,

M(t) = − ∂F

∂H
=
∑

if

∂ (e−iωif tHeff(t)ifρif)

∂H
∝
∑

kl

E∗
0k(t)E0l(t) (2.36)

These equations describe the magnetization induced during the action of the

excitation i.e. when E0(t) andHif
eff(t) are nonzero. According to relation (2.36),

the magnetization is zero after the action of the pulse. The formalism to con-

nect the effective Hamiltonian to the potential function, which would provide

the induced magnetization, is correct only if a medium is in thermodynamic

equilibrium. It is satisfied if Heff, and consequently E∗
0k(t)E0l(t), change slowly

compared to thermal relaxation times of the system.

The situation is very different in the modern experiments demonstrating the

ultrafast IFE, where the changes in magnetization are observed after the action

pulse. Moreover, the condition of a thermodynamical equilibrium cannot be

considered in the ultrafast magnetization experiments, where intensities are

very high and the time scales are shorter than any relaxation time of the

system. Therefore, the description (2.36) is certainly not applicable to the

observations of magnetization dynamics in the recent experiments.

In order to study the time dependence of the magnetization after the action

of a fast laser pulse we suggest to calculate the second order wave function

Ψ2(t), which is the third term of the expansion in Eq. (2.20)

Ψ2(t) =

∫ t

−∞
dt′ eiH0t′ V̂ e−iH0t′

∫ t′

−∞
dt′′ eiH0t′′ V̂ e−iH0t′′Ψ0. (2.37)

Ψ2 is the wave function, which describes the transitions from the initial state

via the excited states to final states. For the three-level system, when the

transitions via the intermediate state j result in the final state f with a different

magnetic signature from that of i, Ψ2(t) provides the probability of the change

of the magnetic state of the system.

The induced magnetization Mα(t) can be derived from this function with

the help of the momentum operators ĵα (α stays for x, y, z) as follows. If

the wave-function of an atomic system is Ψ̃, then the α component of its

magnetization is given by −µBgJ · 〈Ψ̃|ĵα|Ψ̃〉/|Ψ̃|2. The final state f belongs

to the same ground state manifold as the initial one, i. Therefore, the total

influence of i and the state f on the magnetization should be accounted: Ψ̃ =

Ψ0 + Ψ2. The induced magnetization is obtained after the subtraction of the
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Chapter 2. The theory of the inverse Faraday effect

initial magnetization

Mα(t) =− µBgJ

(
〈Ψ0 +Ψ2|ĵα|Ψ0 +Ψ2〉

‖Ψ0 +Ψ2‖2
− 〈Ψ0|ĵα|Ψ0〉

‖Ψ0‖2

)

= −µBgJ




(
〈Ψ0|ĵα|Ψ2〉 − 〈Ψ0|Ψ2〉〈Ψ0|ĵα|Ψ0〉

)
+ c.c.

‖Ψ0 +Ψ2‖2
(2.38)

+
〈Ψ2|ĵα|Ψ2〉 − |Ψ2|2〈Ψ0|ĵα|Ψ0〉

‖Ψ0 +Ψ2‖2

)
.

Note that the impact of the Ψ1(t) to the magnetization was ignored. The

magnetization was normalized by the factor ‖Ψ0 + Ψ2‖2, but not by ‖Ψ0 +

Ψ2‖2 + ‖Ψ1(t)‖2. This is because the IFE experiments are typically done at

frequencies corresponding to the transparency region of a material, where the

absorption is very weak4. Therefore, the intermediate states can be considered

as virtually excited, and the effect of the first order wave function is not taken

into account.

Let us now examine the expression for the induced magnetization (2.38).

The second order wave function is proportional to w = ξT = E2dijdjfT
2, and

therefore is proportional to the peak intensity of a laser pulse I0 ∝ E2. Thus,

the induced magnetization contains terms of different orders of I0, starting

from the linear one. If the terms higher than the first order are ignored, the

induced magnetization can be represented as

Mα(t) ≈ −µBgJ
[(

〈Ψ0|ĵα|Ψ2〉 − 〈Ψ0|Ψ2〉〈Ψ0|ĵα|Ψ0〉
)
+ c.c.

]
. (2.39)

Thus, M(t) depends linearly on the peak intensity. This results from the

interference between the initial and final state, which belongs to the same

ground state manifold. The same dependence is observed in experiments [3,4,

and the references therein].

However, the time evolution of M(t) does not follow that of the pulse

intensity. It is related to the second order wave function Ψ2(t) instead. The

latter is connected to the effective Hamiltonian by the integral

Ψ2(t) = −i
∫ t

−∞
Heff(t

′)dt′. (2.40)

Again, the different approaches to calculate the second order wave function are

compared considering an excitation by a Gaussian-shaped laser pulse of 100 fs

4See, for instance, Ref. [127] and [128] for the optical spectra of orthoferrites and NiO

respectively.

42



2.3. The theory of the inverse Faraday effect at subpicosecond time scales

Figure 2.5: (a) The time evolution of the second order wave function |Ψ2(t)|
applying the approximation (2.24). (b) The time evolution of the second order

wave function |Ψ2(t)| according to the effective Hamiltonian (2.35). Inset:

|Ψ2(t)| (solid red) and |Ψ2(t)| (dashed brown) at ω0 = 9.7 eV.

duration. Ψ2 is calculated for the three-level system using both Hamiltonians

(2.26) and (2.35), respectively. The solution resulting from Hamiltonian (2.26)

is denoted as Ψ2. For its calculation, the approximation (2.24) was applied,

which is consistent with the derivation of Hamiltonian (2.26).

The time evolutions of |Ψ2| and |Ψ2| are plotted in Figs. 2.5(a) and (b),

respectively, in the dimensionless units w = ξT . The evolution of Ψ2 is pro-

portional to the effective Hamiltonian (Fig. 2.5(a)) and thus it has the same

functional dependence as the potential function in Eq. (2.31). This confirms

that the functional F can be used to calculate the magnetization under the

conditions, when assumption (2.24) is applicable. Ψ2 goes to zero after the ex-

citation is finished, and so is the induced magnetization, which is compatible

with Eq. (2.31).

Except at resonance, the functions |Ψ2| and |Ψ2| exhibit the same behavior

during the first half of the pulse (see the inset of Fig. 2.5(b)), but the key

difference is that the function |Ψ2| is nonzero after the action of the pulse.

This means that the system remains in an altered state, i.e. with an altered

magnetization, after the laser pulse has faded away. Therefore, Ψ2(t) is able
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Chapter 2. The theory of the inverse Faraday effect

to describe the magnetization dynamics after the excitation in the ultrafast

magnetization experiments.

In order to calculate Ψ2(t) and M(t) in a solid state correctly, the wave

functions, which describe all transitions over excited levels j and final states

f , which would effect the spin, should be summarized Ψ2(t) =
∑

jf Ψ
jf
2 (t).

It means that the excited states should be accurately investigated in a real

material, and the transition amplitudes to any possible final states of the

ground state manifold should be calculated. However, the simple system pre-

sented here does not influence the conclusions on the temporal behavior of the

effective Hamiltonian and magnetization, which is the main concern of this

Chapter.

The main result concerning the time-dependence of the magnetization is

that it is determined by the function Ψ2(t) and has the similar behavior, as

depicted on the Fig. 2.5. The magnetization changes during the action of the

pulse, and remains altered after the action. The time evolution of M(t) in the

ultrafast regime is completely different from that expected from the relation

−iχE∗(t) × E(t), but approaches it with increasing T (see the discussion of

Eq. (2.35)). However, the induced magnetization M(t) depends still linearly

on the light fluence/peak intensity.

It also can be concluded that, since the function Ψ2(t) depends strongly

on the ultrashort laser pulse properties (such as shape or frequency) in the

ultrafast regime, the same should be true for the induced magnetization. This

statement is supported by the observation of Iida et al. in Ref. [122]. They

obtained that the initial phase and amplitude of the probe pulse polarization

oscillation, which is proportional to the induced magnetization, depends on

the pump wavelength. This result opens large opportunities for tuning spin

dynamics by adjusting laser properties.

To sum up, the approximations used to develop the theory of the IFE in

Refs. [32,35,36,117] are not applicable to the recent ultrafast experiments. The

induced magnetization due to the IFE cannot be extracted from the potential

function (2.31) in the regime of a subpicosecond excitation (T ∼ 1/∆ω). Under

these circumstances, the effective Hamiltonian must be integrated over time to

obtain the wave function describing the transitions, which cause the change of

the magnetic state. Thus, the change of magnetization after the action of an

ultrashort laser pulse can be obtained solving the time-dependent Schrödinger

equation up to the second order of 1/c without further approximations.

The interpretation of the IFE as the generation of an effective magnetic field

does not hold for the ultrafast excitation. Instead, it should be interpreted as a

system coherently brought to a new magnetic state by laser induced transitions:
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2.4. The IFE-1 and IFE-2 processes

from the initial to the intermediate state and from the intermediate to the final

state with different magnetic state from the initial one. The system remains

in this non-equilibrium state, which results in the precession of magnetization

and relaxation processes observed after the excitation.

Similar considerations concerning the validity of classical interpretations

can be applied to other magneto-optical effects (such as the magneto-optical

Kerr effect, the Faraday effect, etc). Most of relations to describe these ef-

fects are derived from thermodynamical functionals. However it is demon-

strated here that magnetization dynamics should be treated differently in

(sub-)picosecond and nanosecond time regions. Thus, the relations for the

magneto-optical effects should be reconsidered in view of different experimen-

tal conditions.

2.4 The IFE-1 and IFE-2 processes

The inverse Faraday effect was predicted by Pitaevskii [32] and was defined by

him as “magnetization of a transparent medium induced by oscillating electric

field”. It was derived by differentiation of the thermodynamical potential with

respect to an external magnetic field. The quantum mechanical description

was provided by Pershan et al. in Ref. [35]. It is based on an effective

Hamiltonian derived from the time-dependent Schrödinger equation up to the

second order. The effective Hamiltonian describes the interaction of light with

a transparent medium. Since the assumption that the laser intensity “changes

slowly compared to thermal relaxation times of the system” was meaningful

for the experimental conditions at that times [36], it was possible to derive

a potential function from this Hamiltonian. Pershan et al. showed that

the induced magnetization is a derivative of this potential. Their formulation

of the effect was “the IFE consists of a magnetization induced by circularly

polarized light in a nonabsorbing material”. Therefore, the IFE according to

Pitaevskii and Pershan et al.’s formalisms consist of two processes, which come

together: (IFE-1) interaction of light with a transparent magnetic medium;

(IFE-2) this interaction produces a quasi-stationary relaxed state, which leads

to the creation of magnetization in the sample.

The IFE-2 takes place, if the intensity “changes slowly compared to thermal

relaxation times of the system”. In this case the interaction of light with a

medium leads to a new thermal equilibrium, because IFE-1 keeps changing

the magnetic state of the system and the system has enough time to relax

according to the new conditions. This quasi-stationary state exists only during

the presence of the excitation. The IFE-2 process does not take place in the
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Chapter 2. The theory of the inverse Faraday effect

ultrafast magnetization experiments, because the action of the laser pulses

is shorter than any relaxation times of a system, and the effects observed in

the modern experiments do not represent the IFE according to its classical

definition.

However, a kind of the IFE-2 valid for the ultrafast dynamics would be the

IFE-2uf process. The IFE-2uf takes place because the system is brought away

from its ground magnetic state by transitions induced by circularly-polarized

laser light. The system has to react to being in this new state, thus a magnetic

precession starts. There are also some decay processes observed in the next

several tens of picoseconds due to relaxation or damping processes. The term

“ultrafast IFE” should be meant by the combination of the IFE-1 and IFE-2uf

processes.

Magnetization dynamics after the excitation, i.e. IFE-2uf process, is

straightforwardly accessed in the experiments. Magnetic precessions are the

usual target for the problem of all-optical manipulation of magnetic order [4,

and the references therein]. However, these effects are determined by the ac-

tion of a laser light on the system, i.e. by the IFE-1 process. Therefore, it is

essential to get insight into and characterize the IFE-1 in order to control the

subsequent dynamics.

The IFE-1 process incorporates coherent spin excitations due to the stim-

ulated Raman scattering process. The next Chapter is concentrated on the

study of the mechanism of a change of a spin state via optically induced tran-

sitions.
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Chapter 3

Mechanism of the ultrafast IFE

due to the spin-orbit coupling

3.1 Introduction

In this Chapter, a detailed insight into the mechanism of the change of a

magnetic state due to the stimulated Raman scattering process triggered by a

circularly polarized laser pulse is given. In this process a laser pulse stimulates

an optical transition from the ground state to a virtual excited state. Via the

transition to the virtual state, the magnetic state of the electron brought back

to the ground state is changed. This process is simulated at the femtosecond

time scale and the mechanism of optically induced magnetic state changes due

to circularly polarized light is investigated.

The spin dynamics, which accompanies this process, and its dependence on

system and laser pulse properties are studied. It is shown in this Chapter that

a system is brought to a new magnetic state after the action of an ultrashort

laser pulse. The magnetization dynamics after the excitation by a laser is

caused by the fact that the system is not in the initial state anymore.

It was shown in Chapter 2 that the standard expression M(t) ∝ E∗(t) ×
E(t), which connects the induced magnetization M(t) with the generating

electric field E(t) is not applicable for subpicosecond pulses. Therefore, the

time-dependence of the induced magnetization requires much deeper under-

standing for the interpretation of the experiments done at subpicosecond time

scale. In this Chapter, the time evolution of M(t) for atomic systems during

and after the presence of an ultrafast laser pulse is calculated, and its depen-

dence on laser pulse properties is studied. It is shown that the magnetization

is nonzero after the excitation, as observed in experiments.
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

The role of spin-orbit coupling (SOC) for the ultrafast IFE is discussed. It

is commonly accepted that SOC is necessary for magneto-optical effects [33].

However, it is unclear what is the exact function of this interaction for the

process. It is also open to question what happens when the spectral width of

a laser pulse is of the order of SOC and whether it limits the pulse duration

required for the effect. To answer these questions, a detailed study of the laser-

induced spin dynamics in a system with SOC is performed. A simple model,

in which SOC is the only spin-dependent interaction, allows to reveal the pure

contribution of this interaction.

Throughout this Chapter, the action of a laser pulse with an electric field

E varying with a frequency ω0:

E = −nEf(t/T − r/(cT )) sin(ω0t), (3.1)

on electronic systems with spatial extend much smaller than the wavelength

λ0 = c/ω0 is considered, therefore, the spatial dependence of the laser pulse

is ignored. E is the time-independent part of the amplitude of the electric

field, n is perpendicular to the direction of propagation and the function

f(t/T − r/(cT )) describes the time and spatial dependence of the ampli-

tude of the electric field. A Gaussian-shaped laser pulse is chosen: f(t/T ) =

e−t
2/T 2

/
√
π3 (3D-normalized). The laser pulse considered is circularly left-

polarized, propagating in the z direction, i.e. n = (nx + iny)/
√
2, nx and ny

are the unit vectors in the x and y directions. Therefore,

E = −(nx + iny)Ee−t
2/T 2

sin(ω0t)/
√
2π3. (3.2)

The factor T equal to 100 fs (T = 10−13 s) and laser fluence Efl ≈ 2 mJ/cm2

are taken, if not otherwise declared. The former parameter corresponds to the

pulse duration at FWHM of the electric field amplitude of approximately 170

fs and the pulse duration at FWHM of the pulse intensity of 117 fs. The latter

is typically referred to as simply “the pulse duration”. The spectral width at

FWHM of the spectral density (see Eq. (B.5)) is ≈ 15 meV. The amplitude E
is ≈ 109 V/m and peak intensity I0 ≈ 5× 109 W/cm2 at the chosen values of

the pulse fluence and duration.

Most of results of this Chapter are published in Ref. [129] and are reused

with the permission from Daria Popova, Andreas Bringer and Stefan Blügel.
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3.2. Magnetization via the stimulated Raman scattering process

3.2 Magnetization via the stimulated Raman

scattering process

3.2.1 The action of a laser field on an electronic system

Let me briefly recall the approach to describe the action of the electric field E

on the system, which is introduced in Chapter 2. The electric field is related

to the vector potential [130]

E = −1

c
A′. (3.3)

The vector potential obeys the wave equation

∆A =

(
∂

c∂t

)2

A =
1

c2
A′′ ; ∇A = 0. (3.4)

This equation is fulfilled, when the spatial extent of the wave train, cT is large

compared to the wavelength λ0.

An unpertubed electronic system is described by the Hamiltonian H0

H0 =
∑

α

p2
α/2 + Vint. (3.5)

pα is the momentum of an electron, Vint is the sum of the kinetic energy of nu-

clei, the interaction energy between electrons and nuclei and mutual Coulomb

energy of the electrons and nuclei. The interactions, which are important for

effects on the spin of the electrons, such as the spin-orbit- and Zeeman inter-

actions, must be also included to Vint. The summation is over all electrons in

the system, the mass and charge of an electron and Planck’s constant are set

to 1 (atomic units).

Wave functions of a perturbed electronic system are found by the solution

of the time-dependent Schrödinger equation. The momentum operator is re-

placed by p−A/c and the equation of motion for an electronic wave function

Ψ is

i
∂Ψ

∂t
=

[
∑

α

(pα −A(rα, t)/c)
2 /2 + Vint

]
Ψ (3.6)

The solution is the expansion

Ψ(t) = e−iH0t (Ψ0 +Ψ1(t) + Ψ2(t) + · · · ) . (3.7)

The Raman process, which is of interest, is of the second order in the inverse

speed of light 1/c. Therefore, the terms up to the third one in the expansion
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

(3.7) are important. They are derived in Appendix A.3.1 for a Gaussian-shaped

laser pulse.

It is shown in Appendix A.2 that, in the case of a discrete spectrum, the

first order wave function describes one photon transitions from the initial state

i of a system to all possible final states j. It can be expressed as a summation

over the j states

Ψ1(t) =
∑

j

dijΓ
(1)
j (t)|φj〉, (3.8)

dij = 〈φj|n ·∑α rα|Ψ0〉 is the dipole matrix element of the transition from the

ground state i to a final state j, φj is the wave function of the j state, the

time-dependence of Ψ1(t) is introduced by the function Γ
(1)
j (t).

The second order wave function, which would provide the induced magne-

tization due the ultrafast IFE, is the summation over all possible intermediate

j and final f states, to which the transitions are allowed

Ψ2(t) =
∑

jf

dijdjfΓ
(2)
jf (t)|φf〉. (3.9)

The time-dependent function Γ
(2)
jf (t) for the excitation by a Gaussian-shaped

laser pulse is derived in Appendix A.3.1

Γ
(2)
jf (t) =

2(εf − εj)(εj − εi)√
π

( ET
2πω0

)2

(3.10)

×
∫ t

−∞
dt′
[
ei(εf−εj)t

′
cos(ω0t

′)e−t
′2/T 2

×
[
e−

(T(ωij+ω0))
2

4 erfc

(
i

2
T (ωij + ω0)−

t′

T

)

+ e−
(T(ωij−ω0))

2

4 erfc

(
i

2
T (ωij − ω0)−

t′

T

)]]
,

εi, εj and εf are the energies of the initial i, an intermediate j and a final state

f , ωkl = εl − εk.

3.2.2 Laser induced magnetization

It is shown in Chapter 2 (see Eq. 2.38) that the laser induced magnetization

M(t) via the stimulated Raman scattering transitions is related to the second

order wave function Ψ2(t) as

∆M(t) ∝ 〈Ψ0 +Ψ2(t)|σ|Ψ0 + Ψ2(t)〉
|Ψ0 +Ψ2(t)|2

− 〈Ψ0|σ|Ψ0〉, (3.11)
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3.2. Magnetization via the stimulated Raman scattering process

where Ψ2(t) includes the summation over the final states f belonging to the

ground state multiplet (see Eq. (3.9)). σ denotes Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(3.12)

Nonzero ∆M(t) is provided by the condition Ψ0 6∝ Ψ2(t). Thus, an interac-

tion, which lifts the degeneracy of spin components regarding the excitation, is

required for magnetization to change. This is provided by the spin-orbit cou-

pling (SOC), which mixes spin and orbital momentum during the transitions,

as will be shown below.

3.2.3 Spin-orbit coupling

SOC is the interaction of a particle motion with its spin. For an electron, it is

the coupling between the electron spin and orbital momentum. The SOC is a

relativistic effect, thus it is provided by the Hamiltonian

H0 = cα(p− 1

c
Ã) + βc2 + φ̃ (3.13)

Ã and φ̃ are the vector and scalar potentials of the electric field of an elec-

tron. β =

(
1 0

0 −1

)
, 1 =

(
1 0

0 1

)
, α =

(
σ 0

0 σ

)
. Ignoring the part of the

Hamiltonian describing positrons, Eq. (3.13) becomes

H0 =

[
c2 +

1

2

(
p− Ã

c

)
− p4

8c2

]
+ φ̃− 1

2c
σ · H̃− 1

8c2
∇ ·E+HSOC, (3.14)

Hsoc =

[
− i

8c2
σ · ∇ × Ẽ− 1

4c2
σ · Ẽ× p

]
, (3.15)

Ẽ and H̃ are electric and magnetic internal fields. If electric field Ẽ is center-

symmetric, then ∇× Ẽ = 0 and Ẽ = −(r/r)(∂V /∂r), leading to

Hsoc =
1

4c2r

∂V

∂r
σ · r× p =

1

4c2r

∂V

∂r
σ · L = −ζsocS · L (3.16)

The role of SOC for the ultrafast IFE will be studied further. It will be

shown that this interaction is necessary for the effect.
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Figure 3.1: The single spin system excited by a circularly left polarized pulse

in the Voigt geometry. The process designated as σ+ is the absorption of a

left-polarized photon. σ− is the emission of a left-polarized photon.

3.3 Single spin system excited by polarized

laser light

The study starts with the most simple system, which will provide an insight

into the optical process leading to magnetic state changes. The system consists

of one electron excited by circularly polarized light. The role of only one inter-

action, SOC, for the ultrafast IFE will be first considered. This will provide a

clear basis for the study of the mechanism leading to optically induced mag-

netization changes. The systems will become more complicated and the other

electron interactions will be gradually included in the course of the thesis.

Let us consider a single spin system (hydrogen atom-like model) excited

by the laser pulse with the electric field (3.2) (see Section 3.1). The system

is initially in the ground 1s state with the spin s0 aligned initially in the x

direction (s0x = 1/2), which is perpendicular to the laser pulse propagation

direction.

The action of the laser pulse on the system magnetic state is given by

the second order wave function Ψ2(t). This function is determined by laser

pulse and system properties. The calculation of Ψ2(t) requires the knowledge

of dipole matrix elements of the transitions from the initial state to possible

intermediate states and from the intermediate states to the final states, as well

as the energies of the excited states and ground states should be calculated (see

Eqs. (3.9) and (3.10)). Thus, the unperturbed Hamiltonians of both ground

state multiplet and excited states should be diagonalized to derive the induced

magnetization via the stimulated Raman scattering process.

If the quantization axis is chosen in the light propagation direction, then
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3.3. Single spin system excited by polarized laser light

the wave function of the initial state is

Ψ0 = Y00R1s

( 1√
2
1√
2

)
, (3.17)

Y00 and R1s are the radial and spherical part of the 1s state wave-function. It is

assumed that the laser frequency ω0 is close to the resonance frequency between

1s and 2p states, and the contribution from the transitions to the other p states

can be ignored. The circularly polarized pulse excites the Raman transition

from the 1s state via the 2p state, back to the 1s, thereby, the spin state in

the 1s should be changed (Fig. 3.1). A noticeable spin-orbit coupling (SOC),

which is about two orders of magnitude higher than in a real hydrogen atom,

is included to the excited state.

It is shown in the Appendix C.1 that in the presence of the SOC, the 2p

state is split into two levels, 2p3/2 and 2p1/2 with the total magnetic momentum

J = 3/2 and J = 1/2, repectively, where J = S + L. The energy of splitting

λ equals to (3/2)ζsoc. The level 2p3/2 is below the position of 2p and has the

energy ε2p3/2 = ε2p − (1/3)λ. The level 2p1/2 is above 2p and has the energy

ε2p1/2 = ε2p + (2/3)λ. The energy of 2p is chosen equal to that of a real

hydrogen atom. If not otherwise stated, λ = 27.2 meV is taken.

3.3.1 The second order wave function

Ψ2(t) due to the excitation by the circularly polarized laser pulse is derived in

Appendix C.1

Ψ2(t) =

(Ed0T
2π

)2
1√
2

(
Γ
(2)
3/2(t)

1
3
Γ
(2)
3/2(t) +

2
3
Γ
(2)
1/2(t)

)
Y00R1s, (3.18)

see Appendix C.1 for the definition of d0. The functions Γ
(2)
3/2(t) and Γ

(2)
1/2(t) are

the time-dependent parts, which enter Eq. (3.9), which describe the transitions

involving the intermediate states 2p3/2 and 2p1/2, respectively. These functions

depend on the energies of initial, intermediate and final states. Since it is

assumed that the SOC in the system is considerable, and the 2p state is split,

Γ
(2)
3/2(t) 6= Γ

(2)
1/2(t).

The second order wave-function (3.18) is a spinor with non-equal time-

dependent spin-up and -down parts (Γ
(2)
3/2(t) 6= 1

3
Γ
(2)
3/2(t)+

2
3
Γ
(2)
1/2(t)). It means,

that the spin does not remain in the x direction (the corresponding spinor

would have equal up- and down-parts, see Eq. (3.17)), but performs a rotation.

If there were no SOC splitting of the excited state, Γ
(2)
3/2(t) would be equal to
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

Figure 3.2: The time evolution of the probability of the Raman scattering

process at λ ≈ 27 meV. The gray line represents the time evolution of the

electric field amplitude.

Γ
(2)
1/2(t), leading to equal spin-up and -down parts of the second order wave

function. In this case, the spin would remain in the x direction. Thus, the SOC

leads to distinct transition amplitudes for the spin-up and -down components

of a spin, thereby the population of a one spin component is transferred to the

opposite component after the stimulated Raman scattering process.

The time evolution of the function |Ψ2(t)|2, which is the probability of

the Raman scattering process, is depicted on Fig. 3.2 at laser frequency

ω0 = ω1s,2p1/2 − λ/2 = ω1s,2p3/2 + λ/2, i.e. between the resonance frequency

ω1s,2p1/2 = (ε2p1/2 − ε1s) of the 1s with the 2p1/2 state, and the resonance fre-

quency ω1s,2p3/2 = (ε2p3/2 − ε1s) of the 1s with the 2p3/2 state. |Ψ2(t)|2 is zero

before the action of the pulse begins, changes smoothly during the excitation

and remains non-zero after the pulse is gone. The time evolution of magne-

tization follows that of Ψ2(t), and consequently of |Ψ2(t)|2, meaning that the

spin rotates while the system undergoes the stimulated Raman scattering pro-

cess. Since Ψ2(t) is nonzero after the action of the pulse, in the end the spin

is rotated relative to the initial position.

Spin rotation by this process is possible, if a system is excited by circularly

or elliptically (not linearly) polarized light. It is shown in Appendix C.2 that

the second order wave function is proportional to
( 1√

2
1√
2

)
in the case of the

excitation by linearly polarized light, which means that the spin is remaining

in the x direction. The same condition is necessary for the stationary IFE as

well.

Another condition for spin rotation is that the initial alignment of the spin
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3.3. Single spin system excited by polarized laser light

should be not parallel to the light propagation direction. For example, if the

spin is pointing in the +z direction initially, then the wave function of the initial

state is Ψ0 ∝
(
1
0

)
. Since the spin-down spinor is not populated, transitions to

the spin-down state are not possible and Ψ2 ∝
(
1
0

)
. Thus, transitions from both

spin states must take place to transfer the population from one spin state to

another, which is possible if spin is not parallel to the propagation direction of a

laser pulse, which has unequal left- and right-circularly polarized components1.

3.3.2 The probability of the spin-flip and induced mag-

netization

The goal of this subsection is to study the dependence of the efficiency of the

ultrafast IFE on the system and laser pulse parameters. A good characteristics

would be the probability of the spin-flip, ws-f(t), that the spin is in the reversed

position relative to the initial one. It is given by the projection of the wave

function on the 1s state with the spinor 1√
2

(
1
−1

)
, corresponding to a spin in the

−x direction,

ws-f(t) =

∣∣∣〈Ψ2(t)|1s, 1√
2

(
1
−1

)
〉
∣∣∣
2

|Ψ0 +Ψ2(t)|2
, (3.19)

where it is taken into account that the projection of Ψ0 onto |1s, 1√
2

(
1
−1

)
〉 are

zero.

Let us first study, how ws-f(t) is related to the induced magnetization. The

latter is given by the relation

∆M(t) = µS(S(t)− S0), (3.20)

where µS is the spin magnetic moment, which equals to -1 in atomic units.

S0 = (S0x, S0y, S0z) and S(t) = (Sx(t), Sy(t), Sz(t)), where S0x, S0y, S0z and

Sx(t),Sy(t), Sz(t) are the expectation values of Ŝx, Ŝy and Ŝz operators in the

initial state and during the excitation, respectively. S0 is simply (1/2, 0, 0).

The expectation values during the excitation, Sα(t) (α is x, y and z), are given

by

Sα(t) =
1

2

〈Ψ0 +Ψ2(t)|σα|Ψ0 +Ψ2(t)〉
|Ψ0 +Ψ2(t)|2

, (3.21)

where σα are the Pauli matrices. S(t) will be referred to as the “spin vector”.

1Linearly polarized light can be represented as a sum of equal left- and right-circularly

polarized components.
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

The magnitude of ∆M(t) can be found by2

|∆M(t)| =
√

(Sx(t)− Sx0)2 + (Sy(t)− Sy0)2 + (Sz(t)− Sz0)2 = (3.22)

=

√(
Sx(t)−

1

2

)2

+ S2
y(t) + S2

z (t) =

√
1

2
− Sx(t).

On the other hand, if Ψ0 +Ψ2(t) =
(
ψ1(t)
ψ2(t)

)
,

ws-f(t) =
1

2

|ψ1(t)− ψ2(t)|2
|Ψ0 +Ψ2(t)|2

=
1

2

( |ψ1|2 + |ψ2|2
|Ψ0 +Ψ2(t)|2

− ψ∗
1(t)ψ2(t) + ψ1(t)ψ

∗
2(t)

|Ψ0 +Ψ2(t)|2
)

=
1

2

(
|Ψ0 +Ψ2(t)|2
|Ψ0 +Ψ2(t)|2

−
〈
(
ψ1(t)
ψ2(t)

)
|σx|
(
ψ1(t)
ψ2(t)

)
〉

|Ψ0 +Ψ2(t)|2

)
=

1

2
− Sx(t). (3.23)

Thus, the spin-flip probability for the current system is related to the magni-

tude of the induced magnetization by ws-f(t) = |∆M(t)|2.
Both spin-flip probability and induced magnetization are constant and non-

zero at the time τp, when the action of the pulse finishes (E(t > τp) = 0).

The magnitude of the induced magnetization after the excitation, |∆M(τp)|,
could be chosen as the characteristics of the IFE efficiency. However, it is not

a constant value in the case, when oscillations of magnetization are induced.

Thus, the final spin-flip probability, ws-f(τp), will be considered. τp = 4T = 400

fs is taken, which corresponds to the time, when the factor e−t
2/T 2

, describing

the time-dependence of the pulse amplitude, becomes negligible.

Dependence on the spin-orbit coupling

Fig. 3.3 shows ws-f(τp) depending on the excitation frequency at three different

values of SOC. It can be seen that the SOC plays a crucial role for ws-f(τp). The

spin-flip probability is decreased at low values of the SOC. With the increase of

SOC, it becomes larger and two peaks at the frequencies ω0 = ω2p3/2 = ε2p−λ/3
and ω0 = ω2p1/2 = ε2p + 2λ/3 develop. If the SOC is very large, then the

probability of the effect is quite low for the excitation frequencies between

ω2p3/2 and ω2p1/2 .

It follows from Eq. (3.18) that if λ = 0, no rotation of the spin would be

observed. Zero or negligible SOC means that ε2p3/2 ≈ ε2p1/2 and, consequently,

Γ
(2)
3/2(t) ≈ Γ

(2)
1/2(t). Therefore, at any time t the spin-up and -down parts of the

spinor (3.18) would be equal to each other, which is the condition that the

2The expression S2
α should be understood as 〈Sα〉2, but not as 〈S2

α〉.
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3.3. Single spin system excited by polarized laser light

Figure 3.3: The total probability of the spin-flip after the action of the laser

pulse depending on the frequency of excitation at different values of λ.

spin is in the x direction, and no rotation would be observed. It explains why

if λ is too low, the effect starts to disappear. However, if the SOC is much

higher than the pulse spectral width (≈ 15 meV), two peaks become isolated.

Dependence on the laser pulse parameters

It follows from Eq. (3.18) that Ψ2(t) is proportional to the squared product of

the electric field amplitude and the pulse duration, (ETdr)2 ∝ (ET )2, therefore,
the spin-flip probability should be proportional to (ETdr)4 (see Eq. (3.19)).

Thus, it can be expected that the variation of the electric field amplitude

E inverse proportionally to the pulse duration Tdr yields the similar value of

the spin-flip probability. Fig. 3.4a shows the spin-flip probability, ws-f(τp),

depending on the pulse duration and the detuning. At every value of the

pulse duration, the electric field amplitude E is adjusted so that ETdr = const.

Although ws-f(τp) is proportional to (ETdr)4, which is constant, the value of

ws-f(τp) is quite different at various time durations. It first increases with the

increase of the pulse duration from 10 fs to 40 fs, thereby its dependence on the

frequency has always one maximum at zero detuning. When the pulse duration

increases from 40 fs to 300 fs, two maxima in the frequency dependence develop

at ω0 = ω2p3/2 and ω0 = ω2p1/2 . The lines at ω2p3/2 and ω2p1/2 become more
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

(a)

(b)

(c)

Figure 3.4: Spin-flip probability depending on the laser pulse frequency and

(a) duration, (b) spectral width at constant ETdr. (c) Spin-flip probability

depending on the laser pulse frequency and duration at constant E2Tdr, E2 =
4
√
2 E . λ = 27.2 meV.
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3.3. Single spin system excited by polarized laser light

∆ωsw, meV Shape Tdr, fs Efl, mJ/cm2 I0, 10
9 W/cm2

Gaus. 364 6.2 0.5

5 Rect. 736 5.9 0.3

Asm. tr. 325 5.5 0.8

Gaus. 121 2.1 4.7

15 Rect. 245 2.0 2.6

Asm. tr. 108 1.8 6.7

Gaus. 72 1.2 13.4

25 Rect. 147 1.2 7.3

Asm. tr. 65 1.1 18.6

Table 3.1: Properties of the laser pulses used to obtain spin-flip probabilities

dependence on Fig. 3.5: spectral widths ∆ωsw, shapes, durations Tdr, fluences

Efl, peak intensities I0.

narrow, and the probability between these lines decreases rapidly with the

increase of the pulse duration from 40 fs to 300 fs.

The effect of the variation of the pulse duration is similar to the variation

of the SOC value. This becomes more clear from Fig. 3.4b, which shows

the dependence of ws-f(τp) on the pulse central frequency and spectral width,

which is inverse proportional to the pulse duration ∆ωsw ∝ 1/Tdr. If the pulse

duration is too short, the spectral width is much larger than the SOC, which

leads to Γ
(2)
3/2(t) ≈ Γ

(2)
1/2(t). With the increase of the pulse duration, the SOC

is effectively increases. Thereby, the two levels, 2p3/2 and 2p1/2 interfere, and

they together contribute to the effect. With the further increase of the pulse

duration, the SOC further effectively increases, which makes the two lines

isolated. Both plots have a maximum at the pulse duration of 40 ∼ 50 fs,

when the spectral width is about 30 ∼ 40 meV, i. e. approximately equal to

λ.

The dependence of the spin-flip probability on the laser pulse frequency and

duration, when E is increased by 4
√
2 times, is shown on Fig. 3.4c. The value

of ws-f(τp) is about two times higher at every frequency and pulse duration

compared to the previous case. Thus, ws-f(τp) depends linearly on E4, and

therefore, on the peak intensity squared I20 . The dependence of the spin-flip

probability on the pulse duration is more complicated and relates to the system

properties.

It will be shown now that the ultrafast IFE is determined by two laser

pulse parameters: the spectral width and the integral of the pulse electric field

over time Et =
∫∞
−∞ |E(t)|dt. The effect of three pulses with different shapes
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

(a)

(b)

Figure 3.5: (a) Final spin-flip probabilities due to the excitation by (red)

Gaussian-, (blue) rectangular-, (green) asymmetric triangular-shaped pulses,

which have equal spectral width of 5, 15 or 25 meV. (b) Intensities of the three

pulses with equal spectral widths of 15 meV, which correspond to the middle

plot on (a).
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3.3. Single spin system excited by polarized laser light

on the final spin-flip probability will be compared for this purpose. The pulses

with Gaussian, rectangular and asymmetric triangular shape are chosen (see

Appendix B).

Fig. 3.5a shows the spin-flip probability dependence on the pulse frequency

for pulses with three different shapes and at three different spectral width.

The duration and peak intensity of the pulses are tuned in such way that

the integral Et is the same for all pulses and at every spectral width. The

dependencies of ws-f(τp) due to pulses with different shapes almost coincide for

a given spectral width. The maxima of ws-f(τp) are only slightly different for

all pulses.

However, the nine pulses obtain totally different durations and peak in-

tensities due to their different shapes (see Appendix B for details). The pulse

fluencies are approximately the same at a given spectral width, but distinguish

by several times at different spectral widths. This can be seen from Table 3.1

showing the characteristics of all pulses and Fig. 3.5b showing the intensi-

ties of three pulses, which lead to the equivalent effect on the final spin-flip

probability.

To sum up, the ultrafast IFE is determined by a pulse spectral width and

the integral of the pulse electric field over time. The induced magnetization

depends linearly on a peak laser intensity and fluence only if pulse shape and

duration are not varied. The pulses with different pulse shapes, but equal

spectral widths and fluences provide approximately equal value of the effect.

3.3.3 The influence of the Raman scattering process on

the spin orientation

The time dependence of the altered components of the magnetization vector

(3.20) are shown on Fig. 3.6a at the laser pulse frequency corresponding to zero

detuning from the position of 2p (ω0 = ω2p). The time evolution of ∆M(t)

is quite different from that expected from the classical equation ∆M(t) ∝
E∗(t)×E(t). First, it does not follow the pulse intensity time dependence, but

is determined by the time evolution of the second order wave function Ψ2(t) (see

Fig. 3.2), as was discussed in the previous Chapter. Second, ∆M(t) remains

altered after the action of the pulse, although E(τp) = 0, which explains why

the magnetization dynamics can be observed after the excitation by ultrashort

laser pulses.

The induced magnetization by the ultrafast IFE also depends on the electric

field E(t) via Ψ2(t) (see Eq. (3.11)). This dependence is quite complicated

in the ultrafast case, but it transfers to the classical relation at long pulse

61



Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

(a) (b)

Figure 3.6: The time dependence of the components of the induced magneti-

zation ∆Mx,y,z at λ = 27.2 meV, when the detuning is: (a) ω0 − ω2p = 0 and

(b) ω0 − ω2p = −20 meV.

durations as shown in Chapter 2. The similarities of the ultrafast IFE to the

stationary one are that ∆M(t) also depends linearly on the laser pulse peak

intensity and cannot be induced by linearly polarized light.

It was discussed in the last subsection that the spin-flip probability depends

on the laser pulse frequency. The same is also true for ∆M(t). Fig. 3.6b shows

the time evolutions of ∆M(t) components at frequency ω0 = ω2p + 20 meV,

which is different from that applied for Fig. 3.6a. Comparing Figs. 3.6a and

b, it can be seen that both magnitude and orientation of ∆M(t) depend on

the frequency of excitation. This statement is supported by the observation in

Ref. [122], that the initial phase and amplitude of a probe pulse polarization

oscillation, which is proportional to the induced magnetization, depends on

the pump wavelength.

The dependence of the spin vector orientation on the excitation frequency

is studied further in order to explain the observed differences of the time evo-

lutions of ∆M(t). The final spin vector orientation S(τp) = M(τp)/µS =

−M(τp) is calculated at different laser frequencies ω0. ω0 is varied between

ω1s,2p3/2 − 3λ and ω1s,2p1/2 + 3λ, covering the region, when the frequency is

close to the resonances (”blue” region “b” on Fig. 3.7(a)) and away from them

(“green” region “c” on Fig. 3.7(a)). The frequency dependence of the final

spin orientation can be separated into two regimes:

(1) when the excitation frequency is close to the resonances. This case is

shown on Fig. 3.7(b). Each blue arrow corresponds to the final spin orientation
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3.3. Single spin system excited by polarized laser light

Figure 3.7: (a) The scale within which the laser frequency is varied. “Blue”

region “b” corresponds to the plot (b), “green” region “c” corresponds to

the plot (c). The blue stars show the exact positions of the resonances (left

- ω0 = ω1s,2p3/2, right - ω0 = ω1s,2p1/2). (b) The final spin vector position,

S(τp) = −M(τp), depending on the frequency of excitation in the resonant

region ”b”. It moves clockwise on the plot, when ω0 increases. The purple

arrows correspond to the resonances: lower is at ω0 = ω1s,2p3/2, upper is at

ω0 = ω1s,2p1/2. (c) S(τp) depending on the frequency of excitation in non-

resonant region ”c”, xy plane, the plot is stretched in the y direction. The

initial position of the spin is shown with the black arrow. λ = 27.2 meV.
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

at a different laser frequency ω0, which is varied within the “blue” region “b”

on Fig. 3.7(a). When ω0 is at the “left” boundary of the region “b” the spin

orientation is close to the initial one. It moves counterclockwise on the plot

with the increase of the frequency and arrives again to the position close to

the initial one, when the frequency approaches the ”right” boundary. At this

regime, first, the effect is quite strong (∆M is large). Second, the direction

of the spin is highly affected by the excitation frequency. Third, the spin

alignment is not in the xy plane.

(2) The situation is quite different, when the frequency is away from the res-

onances. When the frequency is varied within the region “c” on Fig. 3.7(a), the

final spin orientation is always in the xy plane, which is depicted on Fig. 3.7(c).

The effect is much lower in comparison to the resonance regime (1). The final

spin direction still depends on the frequency but much less. The plots are

similar for the situations, when the frequency decreases in the “left” region

“c”, and increases in the “right” region “c”. When the frequency goes away

from the resonance, the final spin position approaches the initial one from the

same “side” in both cases.

3.4 Laser-induced magnetization dynamics in

isolated atoms

The next system, for which the ultrafast IFE is investigated, is an atomic

gas (isolated atoms). This study is also relevant for materials in which the

magnetooptical properties are determined by ions with unfilled f or d shells [51].

In this case, the wave functions of the f and d electrons are localized and can

be approximated by the atomic wave functions. The aim of this Section is to

demonstrate the mechanism of magnetic state change by circularly polarized

light in many-electron systems.

The essential difference of a many-electron system to a one with a spin

1/2 is that its spin is composed of several electron spins according to Hunds

rules. Therefore, spin is not a fundamental quantity anymore and the expecta-

tion value of the spin orientation cannot be accessed straightforwardly. Thus,

the direction of the induced magnetization is obtained by calculation of the

expectation values of momentum operators.

The ground state of Co is 3d74s2 with the total momentum J = 9/2,

the orbital momentum L = 3 and the spin S = 3/2. It is assumed that

in the initial state the projection of the total momentum is defined in the x

direction: Jx = 9/2. The action of the laser pulse described in Section 3.1 is
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3.4. Laser-induced magnetization dynamics in isolated atoms

Figure 3.8: Co atom excited by a circularly left polarized pulse.

considered. The pulse direction of propagation is again perpendicular to the

initial alignment of the magnetic moment. All excited states to which the laser

can cause transitions from the ground state are taken into account (Fig. 3.8).

First, the ground state of the system Ψ0 has to be found by the solution of

the equation

ĵxΨ0 = 9/2Ψ0, (3.24)

ĵx is the momentum operator with (2J + 1) × (2J + 1) elements. In the z

representation, the only nonzero elements of the ĵx matrix are sub-diagonal

and super-diagonal ones:

〈m+ 1|ĵx|m〉 = 1

2

√
(J −m)(J +m+ 1) (3.25)

〈m− 1|ĵx|m〉 = 1

2

√
(J +m)(J −m+ 1)

〈q|ĵx|m〉 = 0, q 6= m± 1.

The resulting ground state wave-function in the Jz representation is

Ψ0 =




ψ9/2

ψ7/2
...

ψ−9/2


 (3.26)

with 2J+1 elements. It is the superposition of the eigenfunctions of the states

with Jz = m. For example,




0

1
...

0


 is the eigenfunction of the state Jz = 7/2.

The transitions from the state
∣∣n, J, Jz = m

〉
via an absorption of a left-

polarized photon are allowed to the states
∣∣ñ, J̃ = J, J ± 1, J̃z = m+ 1

〉
. The
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reversed process of the stimulated emission leads to the transitions back to∣∣n, J,m
〉
with a dipole matrix element, which is the conjugate complex of the

dipole matrix element of the first transition.

As ΨñJ̃
2 (t) the wave-function, which describes the process with two transi-

tions |n, J, Jx = 9/2〉 → |ñ, J̃ = J, J±1, J̃x〉 → |n, J, ¯̃Jx〉, is denoted. Applying
the Eq. 3.9, one obtains

ΨñJ̃
2 (t) =




|〈ñJ̃ 11/2|r+|nJ 9/2〉|2ψ9/2
...

|〈ñJ̃ m+ 1|r+|nJ m〉|2ψm
...

|〈ñJ̃ − 7/2|r+|nJ − 9/2〉|2ψ−9/2




Γ
(2)

ñJ̃
(t), (3.27)

where r+ = (x+ iy)/
√
2 and Γ

(2)

ñJ̃
(t) is the time-dependent part, which depends

also on the energy difference of the states
∣∣n, J

〉
and

∣∣ñ, J̃
〉
. The dipole matrix

elements 〈J̃ m+ 1|r+|J m〉 can be found using the relations [131]

〈J m+ 1|r+|J m〉 =
√

(J−m)(J+m+1)
J(J+1)(2J+1)

〈J |r|J〉 (3.28)

〈J − 1m+ 1|r+|J m〉 =
√

(J−m)(J−m−1)
J(2J−1)(2J+1)

〈J − 1|r|J〉

〈J + 1m+ 1|r+|J m〉 = −
√

(J+m+1)(J+m+2)
(J+1)(2J+1)(2J+3)

〈J + 1|r|J〉.

Summing up the contributions from all possible transitions which lead to

the Raman processes, the corresponding second order function is obtained

ΨR
2 (t) =

∑

ñJ̃

ΨñJ̃
2 (t) =




φ9/2

φ7/2
...

φ−9/2


 . (3.29)

The resulting wave-function




φ9/2

φ7/2
...

φ−9/2


 is not proportional to the wave-function

of the ground state,




ψ9/2

ψ7/2
...

ψ−9/2


, because each element of the latter spinor was

multiplied by a different factor. Consequently, the spinor of the resulting
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3.4. Laser-induced magnetization dynamics in isolated atoms

wave function does not correspond to the state with Jx = 9/2 anymore and

the projection of the magnetic momentum of the final state is different from

the initial one. Therefore, the magnetic state of the system is altered after

experiencing the Raman process.

In order to find out, how the projection of magnetic momentum has

changed, the selection rules should be examined. For the Jx component un-

der an excitation by left-circularly polarized light, they are: for the transition

to the intermediate level the allowed values of the new x projection J̃x are

Jx, Jx ± 1 and for ones to the final (ground) state ¯̃Jx = Jx, Jx ± 1, Jx ± 2.

But Jx = 9/2 is the maximum value of the projection of J = 9/2 and
¯̃Jx = Jx + 1, Jx + 2 are not possible in this case. Therefore, the possible

values of the new magnetic momentum projection are ¯̃Jx = 9/2, 7/2, 5/2 after

the excitation.

The new projection of magnetic momentum can take each of that values

with a certain probability, which depends on the function Ψ2(t). The nor-

malized eigenfunction of the state
∣∣J = 9/2, Jx = mx

〉
is denoted as Ψ0,Jx=mx.

Then, the probability, that an electron experiences the stimulated Raman scat-

tering process and comes to the ground state with the projection of the mag-

netic momentum Jx = mx, is the projection of the function Ψ2(t) on Ψ0,Jx=mx

wmx(t) =
|〈ΨR

2 (t)|Ψ0,Jx=mx〉|2
|Ψ0 +Ψ1 +Ψ2|2

, (3.30)

wmx 6= 0 for mx = 9/2, 7/2, 5/2. The sum of the functions wmx(t) is the

probability of the Raman process, w5/2(t)+w7/2(t)+w9/2(t) = |ΨR
2 |2. In order

to calculate them, one has to know the energies of the excited states
∣∣ñJ̃
〉
of

Co and the corresponding dipole matrix elements, 〈ñJ̃ |r|nJ〉. This data is

taken from the NIST Atomic Spectra Database [132].

The probabilities w5/2(τp) and w7/2(τp) that the x projection of the mag-

netic momentum is changed to 5/2 or 7/2 after the excitation are depicted on

Fig. 3.9 depending on the laser frequency. The probability w9/2(τp) is not of

interest, since it does not lead to any physical changes in the system. The

contribution of every allowed excited level is taken into account for each fre-

quency (see Fig. 3.8). The three strongest lines on Fig. 3.9 correspond to the

frequencies of the laser in resonance with the most intense transitions in Co

(therefore, the probability of the effect becomes higher at these frequencies).

However, other excited states also contribute to the effect. The probabilities

that the value of Jx changes to 7/2 and to 5/2 after the transitions via excited

states are nonzero. It means that the magnetic state of an atom is changed

with a certain probability due to transitions caused by laser excitation. Apply-
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

Figure 3.9: The probabilities of possible values of a new magnetic momentum

projection Jx after the Raman scattering process in Co atom depending on

the frequency of excitation. The inset zooms in the region where w5/2 can be

discerned.

ing analogous considerations as in the previous Section, it can be easily shown

that the effect is present in isolated atoms, only when the laser light is not

linearly polarized.

The induced magnetization ∆M(t) can be derived by the analogy to

Eq. (3.11) using the momentum operators ĵα (α stays for x, y and z) instead

of Pauli matrices σα

∆Mα(t) = −µBgJ
(
〈Ψ0 +Ψ2(t)|ĵα|Ψ0 +Ψ2(t)〉

|Ψ0 +Ψ2(t)|2
− 〈Ψ0|ĵα|Ψ0〉

)
, (3.31)

µB is Bohr magneton and gJ is Landé g-factor, which for the ground state of

Co equals to 5/6. The components of ∆M(τp) are depicted on the Fig. 3.10 at

the time t = τp, i.e. after the action of the light, depending on the frequency

ω0 of the excitation. The properties of the excitation are the same as for the

previous plot. The x component of ∆M(τp) is very weak compared to the

other components (the inset of Fig. 3.10). It results from the selection rules,

which do not allow Jx to change more than by 2 and be lower than 5/2 in such

Raman process.
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Figure 3.10: The components of altered magnetization ∆M(τp) after the Ra-

man scattering process in Co atom depending on the frequency of excitation.

The inset zooms in the region where ∆Mx component can be discerned.

3.5 Conclusions

In this Chapter, the optical mechanism of the ultrafast inverse Faraday effect

was introduced. It was shown that a laser pulse excites two electron tran-

sitions in the systems: from the initial to the intermediate state and from

the intermediate to the ground state. Thereby, the magnetic signature of the

ground state changes with a certain probability. This is possible due to the

SOC, which breaks the spin symmetry for the transitions excited by circularly

polarized light.

It was shown that the spin-flip probability and induced magnetization de-

pend strongly on the ultrafast laser pulse properties. Although the spin-flip

probability depends on the peak intensity squared, the induced magnetization

depends linearly on the peak intensity. However, it was shown that laser pulses

with equal spectral width and equal fluence yield equal values of the effect,

although their peak intensities may be different.

The time evolution of the induced magnetization does not follow that of the

pulse intensity I(t). Therefore, it remains non-zero after the action of the laser

pulse, when I(t) = 0. The correct time evolution of the induced magnetization

can be found by the solution of the time-dependent Schrödinger equation,

which provides the dynamics of the wave-functions of involved electrons during
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Chapter 3. Mechanism of the ultrafast IFE due to the spin-orbit coupling

the excitation.

Strictly speaking, the optical mechanism considered in this Chapter is not

the stimulated Raman scattering in the case of zero Zeeman splitting. Stimu-

lated Rayleigh scattering may be a proper term providing the scattering takes

place on a particle, which is much smaller compared to the light wave length.

However, it was always assumed that the spins are initially aligned in a certain

direction. This is achieved in experiments by the application of an external

magnetic field or taking a magnetically ordered material. Therefore, the mag-

netic states of a ground state manifold are energetically separated, and the

effect is the stimulated Raman scattering. This situation will be considered in

the next Chapters. It will be shown that a magnetic precession is excited by

a laser pulse in this case.

This Chapter was mostly concentrated on the optical mechanism of the

IFE. Thus, only two types of electron interactions were considered in this

Chapter: SOC and the electron correlations within a given atom. In the next

Chapters, the effects of other interactions acting on both excited and ground

states will be studied.
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Chapter 4

The ultrafast inverse Faraday

effect described by a momentum

operator

Kimel et al. in Ref. [9] demonstrated the possibility of non-thermal excitation of

coherent magnetic precessions by an ultrashort circularly polarized laser pulse.

The next step forward to potential applications in spintronics and information

processing is the ability to control magnetic oscillations in a material [47, 69].

The task of magnetization dynamics control starts from the determination of

the equations of motion of magnetic vector components, and their relation to

the laser pulse parameters.

It was discussed in Chapter 2 that magnetization precessions are excited

in a material via laser-induced transitions, which bring the system in a non-

equilibrium state. A magnetic vector starts to precess due to an external

magnetic field, which may be present, or due to internal interactions, such

as exchange interaction, or anisotropy fields. If a new non-equilibrium mag-

netic state of a system is known, then it is straightforward to determine the

time evolution of magnetization. For instance, the Landau-Lifschitz-Gilbert

equation can be applied for the macroscopic description. The Heisenberg rep-

resentation can be used for the microscopic description, thereby, the derivative

of the expectation value of momentum operators are their commutators with

Hamiltonian H0, which includes the fields acting on the ground state.

A problem arises when one tries to include the effect of a laser pulse into

the equations of motion. If the excitation by circularly polarized light is rep-

resented by an effective magnetic field, which follows the pulse intensity, then

zero induced magnetization after the excitation would be obtained. In some
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Chapter 4. The ultrafast IFE described by a momentum operator

references [10, 122, 123, 125] the effect of a laser pulse is considered within a

sudden approximation, namely, as an action of an ultrashort magnetic pulse

with an amplitude proportional to the light intensity multiplied by the Verdet

constant. However, there are two disadvantages of this approach. First, the

sudden approximation cannot provide the information about the new mag-

netic state after the excitation. Moreover, it was demonstrated experimentally

by [40,133] that the strength of the magneto-optical effects are not determined

by the Verdet constant in an ultrafast case. It is shown in the Chapter 3 that

the final state due to the ultrafast excitation should be determined by the

analysis of selection rules, which is not applied in the sudden approximation.

The second problem of the sudden approximation and other approaches,

which consider the action of a laser pulse to be much shorter than the char-

acteristic time of a system, is that the necessary condition for them is not

valid in many cases. For instance, they are not applicable to the description

of the excitation of terahertz precessions (for example in [43, 50]), when the

period of induced oscillations is of several picoseconds. This is just one order

of magnitude more than a laser pulse duration. Thus, equations of motion,

which can describe the time evolution of a magnetic vector both during and

after the action of a laser pulse are necessary.

Equations of motion for microscopic variables are provided by the Heisen-

berg representation. The goal of this Chapter is to deduce the Heisenberg pic-

ture for the ultrafast IFE, which would include only the dynamics of variables

relevant for the study. Thus, an operator HJ which describes the coupling of

light to total momentum operators via the ultrafast IFE is derived. It will be

shown that it is possible to separate the action of the operator HJ from that of

the Hamiltonian H0, which includes the stationary internal or external fields

acting on the magnetic system apart from light. The first advantage of this

approach is that it facilitates the manipulation of magnetic precessions, since

it would be known how circularly polarized light influences magnetic compo-

nents individually. The second benefit is that it can be applied as a link from

the microscopic description of the ultrafast IFE provided in this Thesis to a

macroscopic one.

4.1 Determination of the momentum operator

The action of circularly polarized light on a magnetic system via the stimulated

Raman scattering results in the rotation of a magnetic moment, if it is not

parallel to the light propagation direction and the spin symmetry is broken

via the SOC. This means that it should be possible to express the action of
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4.1. Determination of the momentum operator

light via some operator HJ , which acts on the total angular momentum in

the ground state. If such operator exists, then it should obey the Schrödinger

equation applied to the wave function of the ground state manifold Ψg

iΨ′
g = [H0 +HJ ]Ψg, (4.1)

where H0 is the Hamiltonian, which includes all internal and external fields

apart from light acting on the ground state. The equation of motion of an

expectation value of some operator D̂ can be found in the Heisenberg repre-

sentation as

iD′ = i〈Ψ′|D̂|Ψ〉+ i〈Ψ|D̂|Ψ′〉 = 〈[D̂,H0 +HJ ]〉 (4.2)

The action of the operator HJ should result in the rotation of Jx, Jy and Jz,

therefore, the operators Ĵx, Ĵy and Ĵz should not commute with HJ . This

means that the operator can be expressed via the Ĵα operators. For instance,

the momentum operator in the simplest case of J = 1/2 should have the form

HJ =
(
a(t) c(t)
c∗(t) b(t)

)
. a(t) and b(t) are real functions, because the operator is

hermitian.

Thus, the nonlinear operator describing the perturbation by an electric

field, −d·E, will be replaced by a linear time dependent operator HJ acting on

the total angular momentum Ĵ of a system. In the next Section the elements of

the operator HJ are derived applying the result that the rotation of a magnetic

moment is due to different transition amplitudes from and to the states with

different Jz projections
1.

4.1.1 The case of zero ground state splitting

The operator is derived in this Subsection first for the case, when there is no

field except light acting on the magnetic momentum of a system in the ground

state. It was shown in Chapter 2 that the wave function of the ground state

manifold of such system perturbed by a laser pulse via the stimulated Raman

scattering process is Ψg(t) =
(
Ψ0+Ψ2(t)

)
/|Ψ0+Ψ2(t)|. Ψ0 is the wave function

of the initial state: Ψg(0) = Ψ0; Ψ2(t) is the second order wave function (see

Eq. 2.37). If the total magnetic momentum of the system is equal to J , then

the initial wave function Ψ0 of the system is a spinor, which can be expressed

1The action of a circularly polarized laser pulse propagating in the z direction on a

magnetic system is considered throughout this chapter.
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Chapter 4. The ultrafast IFE described by a momentum operator

as

Ψ0 =




P01

P02
...

P0n


 , (4.3)

where n = 2J+1 and P0k is the k-th projection of J on the z axis,
∑

k |P0k|2 =
1. It was shown in Chapter 3 that transitions from a ground state |J, Jz = mk〉
back only to the state |J, Jz = mk〉 are allowed for circularly polarized light

propagating in the z direction. It was also shown that the k-th spinor element

of the second order wave function Ψ02 is proportional to the dipole moments

〈e|x± iy|Ψ0k〉, where e is an excited state (see Eqs. 3.18 and 3.27). Thus, the

k-th element of Ψ02 is proportional to P0k multiplied by some time-dependent

factor Ak(t)e
iφk(t)

Ψg =
1

N (t)




A1(t)e
iφ1(t)P01
...

Ak(t)e
iφk(t)P0k
...




=




P1(t)
...

Pk(t)
...



, (4.4)

P0k = Pk(0), Ak(0)e
iφ(0) = 1, N 2 =

∑
k |P0k|2|Ak|2.

It was discussed in Chapter 3 that if the magnetic moment of a system is

parallel to the laser pulse propagation direction, then the excitation does not

lead to the rotation of magnetic moment. Therefore, if Ψ0 has a projection

only on the z axis, the action of the momentum operator should not result

in its rotation. It means that if Ψ0 =




0
...
P0k

...


, where |P0k| = 1, then other

magnetic components different from k-th do not become populated due to the

action of light: Ψg =
1

N (t)




0
...

Ak(t)e
iφk(t)P0k

...


. The function Ψg is normalized to

unity, |Ψg| = 1, and Ψg = eiφk(t)Ψ0. This means, that the momentum operator

acts only on the k-th component of the wave function, and is diagonal with

elements (HJ)kk = −φ′
k(t).

Momentum operator for a single spin

Let us further consider the situation when the spin of a system is not aligned

parallel to the light propagation direction. If the operator HJ was diagonal
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4.1. Determination of the momentum operator

in this case, then each spinor component would differ only by a phase from

the corresponding initial component, resulting in the rotation of the magnetic

momentum only around the z axis. In other words, the Ĵz operator commutes

with a diagonal operator, and Jz is not affected by a diagonal operator. How-

ever, it was shown in Chapter 3 that it is not necessarily the case. Thus, HJ

should have non-diagonal components, if spin is not aligned parallel to the light

propagation direction. The letter condition means that the existence of the

non-diagonal components depends on the initial alignment of the magnetic mo-

mentum. Thus, the non-diagonal elements should depend on the expectation

values of the momentum operators.

First the operator is derived for the simplest case, when J = S = 1/2 with

the initial wave function Ψ0 =
(
P01
P02

)
, |P01|2 + |P02|2 = 1, and the operator HJ

is a hermitian 2× 2 matrix

HJ =

(
−φ′

1(t) c(t)

c∗(t) −φ′
2(t).

)
(4.5)

It is shown in Appendix D that the element c equals to iP1P
∗
2 (ν1 − ν2) and

the momentum operator is

HJ =

( −γ1 iP1P
∗
2 (ν1 − ν2)

iP ∗
1P2 (ν2 − ν1) −γ2

)
, (4.6)

where ν1,2 =
A′

1,2(t)

A1,2(t)
= Re

(A′
1,2

A1,2

)
, γ1,2 = φ′

1,2(t) = Im
(A′

1,2

A1,2

)
. A1,2 are the

elements 1 and 2 of a vector A =
(
A1(t)eiφ1(t)

A2(t)eiφ2(t)

)
.

The operator can be expressed as a superposition of the spin operators

Ŝx + iŜy =

(
0 1

0 0

)
, Ŝx − iŜy =

(
0 0

1 0

)
, Ŝz =

(
1
2

0

0 −1
2

)
, Ŝ2 =

(
3
4

0

0 3
4

)
.

(4.7)

Applying that P1P
∗
2 is the expectation value of the operator Ŝx− iŜy: P1P

∗
2 =

〈 P1
P2

|( 0 0
1 0 )| P1

P2
〉, the convenient form of the operator is obtained

HJ = f(t)
(
SyŜx − SxŜy

)
+ g(t)Ŝz + h(t)Ŝ2, (4.8)

where the functions f(t), g(t) and h(t) are

f(t) = 2 (ν2 − ν1) , g(t) = (γ2 − γ1), h(t) = −2

3
(γ1 + γ2). (4.9)

75



Chapter 4. The ultrafast IFE described by a momentum operator

Thus, the operator HJ can be separated into three parts. The first one

is determined by the function f(t) and describes the quadratic effect. The

function f(t) results from the real part of the difference of the transition am-

plitudes for a spin-up and -down component. The second part determined by

g(t) describes the rotation around the z axis. The function g(t) results from

the imaginary part of the difference of the transition amplitudes. The third

part h(t)Ŝ2 does not result in spin rotation. The non-zero difference of the

transition amplitudes for up and down spin components is necessary for both

f(t) and g(t) functions to be non-zero. This is in agreement with the result of

Chapter 3, that a mechanism, which breaks a spin symmetry for laser induced

transitions is needed for the IFE.

The presence of both linear and quadratic terms of spin components may

explain the fact that a single spin is rotated only around the z axis by a

laser pulse with a frequency far from a resonance (see Section 3.3.3). The

strength of the effect is too weak due to an off-resonance excitation, thus the

quadratic terms become negligible and spin motion is determined by the linear

component of the momentum operator.

4.1.2 General equations

In this subsection, the momentum operator in the case, when there is some

additional field H0 acting on the magnetic momentum in the ground state,

is provided. In this case, the wave function of the ground state is Ψg(t) =

U
(
Ψ0 + Ψ2(t)

)
/|Ψ0 + Ψ2(t)|, where U is the time evolution operator, which

obeys the equation H0 U = iU ′ (see Appendix A.1).

Single spin

In the case of a single spin system, the wave function of the ground state is

Ψg = U
[

1

N (t)

(
A1(t)e

iφ1(t)P01

A2(t)e
iφ2(t)P02

)]
=

(
P1(t)

P2(t)

)
. (4.10)

The Hamiltonian Hg, acting on the ground state wave function can be sepa-

rated into two parts

Hg = H0 +HJ , (4.11)

the letter is the momentum operator, which has the same form as in the

previous case

HJ = f(t)
(
SyŜx − SxŜy

)
+ g(t)Ŝz + h(t)Ŝ2, (4.12)
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with f(t) = 2 (ν2 − ν1) , g(t) = (γ2 − γ1), h(t) = −2
3
(γ1 + γ2). But this

time, νk = Re (Yk), γk = Im (Yk), Yk = [UA′]k/[UA]k, k = 1, 2 (see Appendix

D.2). The dependence of HJ on the time evolution operator U results from the

dependence of the second order wave function on the time evolution operator

(see Appendix A.1).

Equations for general J

It is shown in Appendix D that the general form of the momentum operator

for J = 2n + 1 is with diagonal elements (HJ)kk = −φ′
k, and (HJ)kl,k 6=l =

iPkP
∗
l (νk − νl)

HJ =




. . .

−γk · · · iPkP
∗
l (νk − νl) · · ·

...
. . .

iP ∗
kPl (νl − νk)

...



, (4.13)

where νk = Re (Yk), γk = Im (Yk), Yk = [UA′]k/[UA]k, k = 1 . . . n. A is a

vector of the form

(
A1(t)eiφ1(t)

...

)
. It can be also expressed as

HJ = −
n∑

k

γkN̂k +
1

2

n∑

k,l

(νk − νl)
(
Nkl−N̂kl+ −Nkl+N̂kl−

)
, (4.14)

where N̂kl± and N̂k = N̂kk+ are momentum operators, the expectation values

of which are connected to Pk,l by

〈Nkl+〉 = PkP
∗
l + P ∗

kPl (4.15)

〈Nkl−〉 = i(PkP
∗
l − P ∗

kPl). (4.16)

The operators can be expressed by matrices with elements

(Nkl+)kl = (Nkl+)lk = 1, l ≥ k

(Nkl−)kl = −i, (Nkl−)lk = i, l > k (4.17)

N̂k = N̂kk+, (Nkk+)kk = 1

(Nkl±)mn = 0, if m 6= k, m 6= l, n 6= k, n 6= l or l < k.
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For example, if J = 3/2, then

N̂12+ =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 , N̂12− =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


 , N̂1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 .

(4.18)

The operators N̂kl± and N̂k can be represented by the combination of Ĵx, Ĵy,

Ĵz and Ĵ2. For example, if the total momentum J = 3/2, the operator N̂12+

equals to {{Ĵx, Ĵz}, 4Ĵ2/15+Ĵz}/(2
√
3), where {} designates anti-commutator:

{Â, B̂} = ÂB̂ + B̂Â.

The operators Ĵx, Ĵy, Ĵz and Ĵ
2 can be always represented by linear com-

binations of N̂kl± and N̂k operators: Ĵx - by N̂kl+, Ĵy - by N̂kl−, and Ĵz and Ĵ2

- by N̂k. However, if J > 1/2, then the operators N̂kl± cannot be expressed by

linear combinations of Ĵx, Ĵy, Ĵz and Ĵ2. Thus, if J > 1/2, the light couples

via the ultrafast IFE not only to x, y and z magnetic momentum components,

but also to magnetic momentum components of a higher order. This means

that the value of J2
x + J2

y + J2
z is not conserved after the action of light and

not only direction, but the length of a magnetic vector is also affected by the

IFE.

4.2 Equations of motion

The equations of motion of the expectation values of the N̂kl± operators are

given by N ′
kl± = −i〈[N̂kl±,H]〉 according to the Heisenberg representation,

where H is the Hamiltonian acting on N̂kl±. If H = HJ , the general form of

the equations of motion is (see Appendix D)

N ′
kl± = (F + νk + νl)Nkl± ± (γk − γl)Nkl∓, (4.19)

where F = −2
∑

k νkNk. For instance,

N ′
12+ = (F + ν1 + ν2)N12+ + (γ1 − γ2)N12−

N ′
12− = (F + ν1 + ν2)N12− − (γ1 − γ2)N12+ (4.20)

N ′
1 = (F + 2ν1)N1.

It follows from these equations, that if magnetic momentum has a projec-

tion only on z axis, then the other components are not populated due to the

action of circularly polarized light. For instance, if a wave function has only
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q-th non-zero spinor component, then Nq = 1 would be the only non-zero ex-

pectation value. Thus, all derivatives of Nkl± and Nk would be zero including

that of Nq: F = −2νqNq = −2νq, N
′
q = (−2νq + 2νq)Nq.

Now, assume that all elements of A are equal to each other. This would

lead to ν1 = ν2 = . . . = ν and γ1 = γ2 = . . . = γ. Thus, any factor (γk − γl)

entering Eq. 4.19 would de zero. F = −2
∑

k νkNk = −2ν
∑

kNk = −2ν, since∑
k N̂k = 1. And any factor (F + νk + νl) would be also zero: F + νk + νl =

−2ν + ν + ν = 0. This means that any N ′
kl± = 0 and all variables Nkl±

would not change. Thus, if transitions amplitudes are equal for all magnetic

components, rotation of the magnetic moment is not possible. This result

is compatible with the discussion of the Chapter 3 that a mechanism which

would break the symmetry for transitions of different magnetic components is

necessary for the IFE. It was shown that this mechanism is due to the SOC

and excitation by a laser pulse, which is not linearly polarized.

4.3 Examples

4.3.1 Equations of motion of a single spin in an external

magnetic field

If there is an external magnetic field B, acting on a single spin in the −x
direction, then the Hamiltonian acting on the ground state is

Hg = −ωŜx + f(t)
(
SyŜx − SxŜy

)
+ g(t)Ŝz + h(t)Ŝ2, (4.21)

where ω is the Larmor frequency. The time evolution operator U due to the

magnetic field is

U = eiωŜxt =

(
cos(ωt

2
) −i sin(ωt

2
)

−i sin(ωt
2
) cos(ωt

2
)

)
. (4.22)

Acting with this operator on A and A′ vectors and substituting the result into

Yk, one obtains

Y1 =
V ′
+e

−iωt/2 + V ′
−e

iωt/2

V+e−iωt/2 + V−eiωt/2

Y2 =
V ′
+e

−iωt/2 − V ′
−e

iωt/2

V+e−iωt/2 − V−eiωt/2
(4.23)

V± =
A1e

iφ1 ± A2e
iφ2

2
,
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which can be used to determine f(t) and g(t).

For example, if the initial wave function corresponds to the lowest lying

state, namely, the spin aligned in the x direction, then Ψ0 =
(

1/
√
2

1/
√
2

)
. The

second order wave function can be expressed as Ψ2 =
(

(1/
√
2)ψ21(t)

(1/
√
2)ψ22(t)

)
. Thus,

V+ = 1 + (ψ21(t) + ψ22(t))/2, V− = (ψ21(t)− ψ22(t))/2.

The relation iS ′
α = 〈[Ŝα,Hg]〉 (α = x, y, z) provides the set of the equa-

tions of motion of the spin components Sα due to the laser excitation and the

magnetic field

S ′
x = −f(t)SxSz − g(t)Sy

S ′
y = −f(t)SySz + g(t)Sx + ωSz (4.24)

S ′
z = f(t)(S2

x + S2
y)− ωSy.

The functions f(t > τp) and g(t > τp) are zero after time τp, when the excita-

tion is finished, since f(t) and g(t) are proportional to the components of Ψ′
2(t).

It was shown in Chapter 2 that Ψ2(t > τp) is constant, thus Ψ′
2(t > τp) = 0.

Therefore, Eq. (4.24) describes the spin motion due to both laser excitation

and magnetic field during the action of a laser pulse. The terms, which de-

termine the spin motion due to the excitation, are smoothly turning off while

the excitation is finishing, and the spin motion is determined only by Zeeman

interaction after the action of a laser pulse. Thus, the spin motion due to the

Zeeman interaction is separated from that due to the ultrafast IFE as desired.

This result will be used in the next Chapter for study of the spin dynamics

due to the IFE and an external magnetic field.

4.3.2 Equations of motion of magnetic momentum with

J = 3/2

A system with magnetic momentum J = 3/2 excited by circularly polarized

light is considered in this example. No other field acting on magnetic moment

is assumed (U = 1).

The time evolutions of the expectation values of the momentum opera-

tors Ĵx, Ĵy and Ĵz are of interest. These operators can be expressed via the
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operators N̂kl± by

Ĵx =

√
3

2
N̂12+ + N̂23+ +

√
3

2
N̂34+

Ĵy =

√
3

2
N̂12− + N̂23− +

√
3

2
N̂34− (4.25)

Ĵz =
3

2
N̂1 +

1

2
N̂2 −

1

2
N̂3 −

3

2
N̂4.

Thus, the expectation values of Ĵx, Ĵy and Ĵz and their time derivatives, J ′
x,

J ′
y and J ′

z, can be expressed via Nkl± and N ′
kl±.

The system of first order differential equations for Nkl± are given by the

simple relation (4.19). However, the first order differential equations for Jx,

Jy and Jz cannot be represented only in terms of Jx, Jy and Jz. They involve

additional variables Nkl± and Nk. For instance, the equation for J ′
z requires

at least two additional equations for variables Nk:

J ′
z = ν1N1(3− 2Jz) + ν2N2(1− 2Jz)− ν3N3(1 + 2Jz)− ν4N4(3 + 2Jz). (4.26)

Thus, there are two approaches to obtain the time evolutions of Jx, Jy and

Jz. The first is to solve the systems of first order differential equations for the

expectation values of ten involved operators N̂12±, N̂23±, N̂34±, N̂1, N̂2, N̂3 and

N̂4. Such equations can be conveniently obtained for Nkl± applying Eq. (4.19).

N ′
1 = (F + 2ν1)N1

N ′
2 = (F + 2ν2)N2

N ′
3 = (F + 2ν3)N3 (4.27)

N ′
4 = (F + 2ν4)N4

N ′
12± = (F + ν1 + ν2)N12± ± (γ1 − γ2)N12∓

N ′
23± = (F + ν2 + ν3)N23± ± (γ2 − γ3)N23∓

N ′
34± = (F + ν3 + ν4)N34± ± (γ3 − γ4)N34∓,

where F = −2 (ν1N1 + ν2N2 + ν3N3 + ν4N4). Applying that 〈N̂1 + N̂2 + N̂3 +

N̂4〉 = 〈1〉 = 1, the system can be reduced to nine equations. The time

evolutions of Jx, Jy and Jz is straightforwardly derived from that of Nkl± and

Nk using the relations (4.25).

The second approach is to reduce the system of nine differential equations

of the first order to a system of three differential equations of the third order,

which will involve only variables Jx, Jy and Jz. For instance, Eq. (4.26) can be

twice differentiated to obtained the expressions for J ′′
z and J ′′′

z . The variables
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Chapter 4. The ultrafast IFE described by a momentum operator

N1, N2, N3 and N4 can be first expressed via Jz, J
′
z and J

′′
z and then substituted

to the equation for J ′′′
z . The similar procedure can be applied for Jx and Jy.

Thus, the dynamics of Jx, Jy and Jz can be described by a system of three

differential equations of the third order, which involve only variables Jx, Jy
and Jz.

Note, that a system in the previous example characterized by S = 1/2 was

described by first order differential equations. It can be shown that the time

evolution of Jx, Jy and Jz due to the ultrafast IFE can be described by three

differential equations of 2J-th order, where J is the total momentum.

Let us examine the system of differential equations (4.27). It can be noticed

that the equations of motion for the variables Nk include only Nk variables.

Thus, Nk are independent from Nkl± (for k 6= l). It means, that since Jz
depends only on Nk variables, and Jx and Jy - on Nkl± (for k 6= l), the time

evolution of Jz does not depend on the time evolutions of Jx and Jy
2.

This allows the following conclusion. Consider two equal systems, which

have initially equal z projections but different x and y projections. If a circu-

larly polarized laser pulse propagating in the z direction excites the systems,

then the time evolutions of z components of their magnetic moments will be

equal.

Assume now that two equal systems have initially opposite x and y, but

equal z magnetic moment projections. The variables entering the differential

equations (4.27) for system 1 and 2 are denoted as N
(1)
kl± and N

(2)
kl±, corre-

spondingly. The initial conditions for the differential equations (4.27) would

be N
(1)
k (0) = N

(2)
k (0) and N

(1)
kl±(0) = −N (2)

kl±(0) (for k 6= l). The condition

N
(1)
k (0) = N

(2)
k (0) would lead to N

(1)
k (t) = N

(2)
k (t) and F (1)(t) = F (2)(t). It

can be easily seen that the latter relation together with the initial condition

N
(1)
kl±(0) = −N (2)

kl±(0) (for k 6= l) would result in N
(1)
kl±(t) = −N (2)

kl±(t). Thus, Jx
and Jy would remain opposite for the two systems during and after the action

a laser pulse.

Therefore, the following relations are valid for two equal systems excited

by a same circularly polarized laser pulse propagating in the z direction. If

the systems have equal z components of the magnetic moment, Mz1(0) =

Mz2(0), then these components remain equal Mz1(t) = Mz2(t) during and

after the excitation. If, in addition, they have opposite x and y magnetic vector

components, Mx1,y1(0) = −Mx2,y2(0), then they remain opposite: Mx1,y1(t) =

−Mx2,y2(t). It can be shown that this is true for any J . This result will be

applied for the study of the dynamics of an antiferromagnet due to the ultrafast

2Note that S′
z depended on S2

x + S2
y in the previous example. However, S2

x + S2
y can be

substituted for 1/4− S2
z , if S = 1/2.
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IFE in the Chapter 6.
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Chapter 5

Larmor precession in an

external magnetic field induced

by the ultrafast IFE.

Circularly polarized light is able to induce transitions in an electronic system,

which would result in a change of the magnetic signature of the ground state

manifold. If there is some stationary external magnetic field or an internal

field which acts on the magnetic system (such as exchange interaction), the

magnetic states of the ground state manifold are energetically separated. In

this case, the deviation of a magnetic moment from its ground state due to

the action of a circularly polarized light results in the oscillation of a magnetic

vector. Therefore, the complete description of the ultrafast IFE requires the

investigation of two mechanisms: a laser-induced magnetic state change and

triggering of a magnetic precession.

The mechanism of the optical process leading to the change of the magnetic

state of a system was discussed in detail in Chapter 3. It was demonstrated in

Chapter 4 that the time evolution of a magnetic vector during the excitation is

governed by both mechanisms: laser induced transitions into a new magnetic

state and the action of a stationary field, which affects the electron magnetic

momentum. Therefore, the magnetization dynamics due to the two processes

together should be investigated to obtain the correct magnetic state after the

action of a laser pulse.

In this Chapter, the results of Chapters 3 and 4 are applied to study a spin

Larmor precession in an external magnetic field induced by circularly polarized

light. It will be shown that the phase and amplitude of the induced oscillations

are determined during the laser excitation. Therefore, the calculation of the
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Chapter 5. Larmor precession triggered by the ultrafast IFE

Figure 5.1: Spin 1/2 in an external magnetic field

time evolution of an electron spin during the action of a laser pulse is necessary

to obtain the spin dynamics after it.

5.1 Single spin in an external magnetic field

The same system as in Section 3.3 is considered (see Fig. 5.1), but, additionally,

an external magnetic field B applied in the −x direction acts on the spin. It

yields the splitting of the ground state s into two states |x+〉 and |x−〉 by the

Zeeman interaction (see Fig. 5.2). The lowest energy state is |x+〉 with the

spin pointing in the +x direction and the energy ǫx+ = ǫ1s − B/2 (in atomic

units). The state |x−〉 with the spin pointing in the −x direction is with the

energy ǫx− = ǫ1s + B/2. The excited state is split into six levels by the spin

orbit and Zeeman interactions (see Appendix C.3.1). The spin orbit coupling

constant ζsoc is 20 meV, which splits the 2p3/2 and 2p1/2 states by 30 meV in

the absence of the magnetic field.

This system is excited by an ultrafast circularly polarized laser pulse prop-

agating in the z direction. This pulse induces Raman transitions in the system

with non-zero probability of a spin flip (see Chapter 3). This means that Ra-

man transitions from the |x+〉 to the |x−〉 state are allowed (see Fig. 5.2). The

new spin state after the excitation is the superposition of the states |x+〉 and
|x−〉, resulting in the spin deviation from its initial alignment. This leads to

the spin precession around the external magnetic field with the frequency of

the Larmor precession ωB = B (Fig. 5.1).
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5.2. Spin equations of motion

Figure 5.2: The energy level scheme of the system.

5.2 Spin equations of motion

It was shown in Section 4.3.1 that the effective spin Hamiltonian acting on the

spin in the s state can be written as

Hg = −ωBŜx + f(t)
(
SyŜx − SxŜy

)
+ g(t)Ŝz + h(t)Ŝ2. (5.1)

The equations of motion of the spin components of the s state are provided by

the relation i〈Sα〉′ = 〈[Sα,Hg]〉 (α = x, y, z)

S ′
x = −f(t)SxSz − g(t)Sy

S ′
y = −f(t)SySz + g(t)Sx + ωSz (5.2)

S ′
z = f(t)(S2

x + S2
y)− ωSy.

The functions f(t), g(t) and h(t) are time-dependent functions, which describe

the action of the circularly polarized laser pulse. They are non-zero during the

excitation, and zero after it. The functions f(t) and g(t), which enter Eq. 5.2,

are connected to the second order wave function Ψ2 =
(

(1/
√
2)ψ21(t)

(1/
√
2)ψ22(t)

)
via the

relations

f(t) = 2Re (Y2 − Y1) , g(t) = Im (Y2 − Y1)

Y2 − Y1 =
2
(
V−V ′

+ − V+V
′
−
)

V 2
+e

−iωBt − V 2
−eiωBt

(5.3)

V+ = 1 +
ψ21(t) + ψ22(t)

2
, V− =

ψ21(t)− ψ22(t)

2
.
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Chapter 5. Larmor precession triggered by the ultrafast IFE

The second order wave function in the presence of the external mag-

netic field excited by a laser pulse with the electric field E = −(nx +

iny)Ef(t) sin(ω0t) are

Ψ2(t) =
1√
2

(
ψ21(t)

ψ22(t)

)
=

1√
2

( E
ω0

)2 ∫ t

−∞
dt′ U(t′)

(∑
j |d↑j|2Gj(t

′)∑
j |d↓j|2Gj(t

′)

)
, (5.4)

where

Gj(t
′) = e−i∆ω0jt

′
f(t′/T ) cos(ω0t

′)

∫ t′

−∞
dt′′ei∆ω0jt

′′
e−iωBt

′′/2f(t′′/T ) cos(ω0t
′′)

(5.5)

and U(t) = eiωB Ŝxt =

(
cos(ωBt

2
) −i sin(ωBt

2
)

−i sin(ωBt
2
) cos(ωBt

2
)

)
is the time evolution opera-

tor due to the stationary magnetic field. The summation is over excited states

j. ∆ω0j = ǫ2p,j − ǫ1s, where ǫ1s is the energy of the un-split 1s state, ǫ2p,j are

the energies of the excited states. d↑j and d↓j are the dipole matrix elements

of the transitions from the states |1s, Sz = +1
2
〉 and |1s, Sz = −1

2
〉 to the state

j.

The excited level, which is the p-state, is split into six states due to the spin

orbit coupling and the Zeeman interaction (see Fig. 5.2). The wave functions

of the excited states j, the dipole matrix elements d↑(↓)j of the transitions, and
energies of the excited states ǫ2p,j are calculated in Appendix C.3.1. It is also

shown there that the spin reorientation is possible only in the presence of the

spin-orbit coupling. The Zeeman interaction alone does not lead to the spin

state change via the stimulated Raman scattering.

5.3 Time evolution of the spin vector

In this section, spin dynamics driven by the action of a circularly polarized

laser pulse and different applied magnetic fields is calculated. Two applied

magnetic fields with magnitudes of 7 T and 20 T are considered. Although the

chosen magnetic fields are rather high, they are reasonable for the comparison

with the experiments, studying the ultrafast IFE at a presence of an external

magnetic field. The external magnetic fields up to 0.5 T are usually applied,

but materials used there have gyromagnetic factor about ten times higher than

that of a single electron spin1 (e. g. see Refs. [10, 40, 41, 53]). Thus, the cho-

sen magnitudes of the magnetic fields result in Larmor precession frequencies,

which are relevant for experiments.

1The electron spin gyromagnetic ratio is 2.8 MHz/G=28 GHz/T.
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Figure 5.3: Time evolution of spin vector components due to the excitation at

different applied magnetic fields in the x direction. The gray line represents

the time evolution of the electric field amplitude. Laser pulse duration is 117

fs, detuning 0 meV.

The laser excitation is with the left-circularly polarized Gaussian shaped

pulse with the duration Tdr1 = 117 fs (spectral width 15 meV) and fluence

Efl ≈2 mJ/cm2 (see Section 3.1 for details). The laser central frequency ω0

at zero detuning2. The magnetic field of 7 T results in the Larmor precession

period TB7 of approximately 5 ps, TB7/Tdr1 = 40, and the splitting of the s

state by 0.8 meV. The magnetic field of 20 T results in the Larmor precession

period TB20 of approximately 1.7 ps, TB20/Tdr1 = 15, and the splitting of the

s state by 2.7 meV.

The time evolution of the spin vector components Sx, Sy and Sz are shown

on Fig. (5.3) at the two applied magnetic fields and zero magnetic field for a

reference. The spin vector components at zero magnetic field will be referred

to as the “reference values” S
(0)
x , S

(0)
y , S

(0)
z . Although the time evolution of the

2Detuning is defined as the difference between the laser central frequency and the energy

between un-split 1s and 2p states: ω0 − (ǫ2p − ǫ1s).

89



Chapter 5. Larmor precession triggered by the ultrafast IFE

(a)

x
y

z

(b)

(c)

x
y

z

(d)

(e)

x
y

z

(f)

Figure 5.4: Left column: fields (in energy units) acting on the spin during the

excitation. Right column: the corresponding time evolution of the spin vector

on the Bloch sphere (note that these 3D plots have different meaning from

Fig. 3.7 in Chapter 3, which depicts the final spin vector position depending

on the frequency). The black arrow shows the initial alignment of spin. The

two-color lines show the dynamics of the spin during the excitation, i. e. at

t < 200 fs, the one-color lines show the dynamics of the spin after the excitation

at t > 200 fs. The external magnetic fields are (a), (b) B = 0. (c), (d) B = 7 T.

(e), (f) B = 20 T.
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Sx component is almost not affected at the chosen conditions3, the dynamics

of the Sy and Sz components is affected by the external magnetic field during

the excitation. Sy and Sz considerably deviate from the reference values at

the time, when the electric field amplitude starts to be negligible (at the time

τp = 200 fs).

Let us examine the error on the phase of the spin Larmor oscillation, which

would be obtained, if one ignores the action of the magnetic field during the

laser excitation. The spin oscillation around the magnetic field after the action

of the laser pulse is described by the equations

Sx(t > τp) = Sx(τp)

Sy(t > τp) = Sy(τp) cos(ωBt) + Sz(τp) sin(ωBt) (5.6)

Sz(t > τp) = Sz(τp) cos(ωBt)− Sy(τp) sin(ωBt)

If the spin motion due to the magnetic field during the excitation would be ig-

nored, then the reference values S
(0)
x , S

(0)
y , S

(0)
z would be substituted as the ini-

tial conditions for the equations of the spin oscillation: Sx,y,z(τp) = S0
x,y,z(τp).

This would lead to the phase disagreement with the exactly obtained time evo-

lutions of 14◦ in the case of B = 7 T and 47◦ in the case of B = 20 T. Thus, the

sudden approximation does not work correctly even if the oscillation period is

about 50 times larger than the pulse duration. This statement is confirmed by

the observation of Satoh et al. that models, which ignore the time-dependency

of a laser pulse, are not sufficient to describe the initial stage of a magnetic

precession [43].

Fig. 5.4 shows the fields acting on the spin in energy units (see Eq. (5.1))

and the corresponding spin vector movement in time, which are the 3D picture

of the time evolutions shown on Fig. 5.3. The functions f(t) and g(t) arise

from the excitation by the laser pulse. Although f(t) and g(t) depend on the

magnetic field (see Eq. (5.3)), their modifications even due to the magnetic

field of 20 T are negligible. It follows from Figs. 5.4c and e that f(t) and

g(t) during the excitation are of the same order of magnitude as the Zeeman

interaction.

Comparing Figs. 5.4b, d and f, it can be seen that the spin vector evolution

during the excitation is modified by the external magnetic field. The spin

moves almost always in the xy plane, when magnetic field is zero. However,

its trajectory during the excitation is rotated by about 45◦ around the z axis,

when B = 20 T. Furthermore, the spin trajectory starts to follow that of the

Larmor oscillation even during the action of the laser pulse at B = 20 T (see

Fig. 5.4f).

3It will be shown in the next section that this can be different at other conditions.
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The amplitude of the spin precession is AS =
√
S2
y + S2

z =
√
1/4− S2

x. At

the same time, it was shown in Section 3.3.2 that the spin-flip probability is

given by ws-f = 1/2−Sx. Thus, the amplitude of the induced precessions of the

single spin system is related to the spin-flip probability as AS =
√
ws-f − w2

s-f.

Since the spin-flip probability is proportional to the peak intensity squared,

the amplitude of the induced precessions is linearly proportional to the peak

intensity at low values of ws-f, which agrees with the experimental observations

[4].

5.4 Spectral dependence

The Sx component of the spin vector and, consequently, the amplitude of the

induced precession AS did not depend on the magnitude of the magnetic field

at the laser pulse parameters chosen in the previous section. However, it is

not always the case.

Figs. (5.5a and b) show the dependence of the amplitude on the detuning

and the laser pulse spectral width at zero magnetic field4 and B = 20 T. The

spectral width ∆ωsw is varied between 5 meV and 35 meV, which corresponds

for Gaussian-shaped pulses to the pulse durations between 365 fs and 54 fs.

The amplitude of the electric field at every value of ∆ωsw is adjusted in such

way that the value of E/∆ωsw is constant (see Section 3.3.2 for details).

Fig. 5.5c shows the difference between the amplitudes at B = 0 and B =

20 T, ∆AS = A
(B=0)
S − A

(B=20T)
S , depending on the spectral width and laser

frequency. The difference between the amplitudes is negligible at large spectral

widths. However, it becomes noticeable at spectral widths lower than 10 meV,

thereby the amplitude at zero magnetic field is higher than at B = 20 T.

This effect is due to the interplay between the laser pulse spectral width

and the value of the Zeeman interaction. If the spectral width is about 30

meV, it is much higher than the Zeeman interaction, which is 2.72 meV. The

values of transition amplitudes are not influenced by the detuning due to the

Zeeman splitting of the s state (see Fig. 5.2). However, when the spectral width

decreases to 10 meV or lower, it starts to be comparable with the Zeeman

interaction. The difference between the initial |x+〉 and final |x−〉 state due

to the Zeeman splitting becomes significant for the value of the transition

amplitudes, which become reduced by the detuning.

Laser pulse parameters, at which the time evolution of Sx is considerably

4The value AS =
√
1/4− S2

x(τp) is referred to as an “amplitude” in the case of zero

magnetic field for convenience.
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(a)

(b)

(c)

Figure 5.5: (a), (b) the dependence of the amplitude of the induced precession,

AS =
√

1/4− S2
x(τp), on the laser central frequency and spectral width at (a)

B = 0; (b) B = 20 T. (c) The difference between the amplitudes shown on

(a) and (b). Note that Fig. (3.4b) shows the dependence of the final spin-flip

probability ws-f(τp) = 1/2− Sx(τp) on the same parameters.
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Figure 5.6: Time evolution of spin vector components due to the excitation at

different applied magnetic fields in the x direction. The gray line represents

the time evolution of the electric field amplitude. Laser pulse duration is 300

fs, detuning 10 meV.

affected by magnetic field of 20 T, are taken to compare the spin dynamics.

Thus, a laser pulse with duration Tdr2 = 300 fs (∆ωsw = 6 meV) and the

central frequency of 10 meV detuning is taken. The pulse duration is by a

factor 2.6 longer than in the previous case. The laser-induced spin dynamics

at zero magnetic field and magnetic field of 20 T are compared. The period of

the spin Larmor precession due to the magnetic field of 20 T is TB20/Tdr2 = 6.

As expected, the time evolutions of all spin vector components Sx, Sy
and Sz at magnetic field 20 T considerably deviate from the corresponding

time evolutions at zero magnetic field during the action of the laser pulse

(see Fig. 5.6). Fig. 5.7 shows the corresponding 3D picture of the spin vector

trajectory and the fields acting on the spin in energy units. The functions f(t)

and g(t) at B = 20 T are noticeably smaller than f(t) and g(t) at zero magnetic

field. The considerable dependence of f(t) and g(t) on the magnetic field is

due to the small laser pulse spectral width. Its value of 6 meV is comparable

with the Zeeman interaction of about 3 meV and leads to the non-negligible

94



5.4. Spectral dependence
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Figure 5.7: Left column: fields (in energy units) acting on the spin during

the excitation. Right column: the corresponding time evolution of the spin

vector on the Bloch sphere. The black arrow shows the initial alignment of

spin. The two-color lines show the dynamics of the spin during the excitation,

i. e. at t < 200 fs, the one-color lines show the dynamics of the spin after the

excitation at t > 200 fs. The external magnetic fields are (a), (b) B = 0. (c),

(d) B = 20 T.
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dependence of the transition amplitudes on the magnetic field, resulting in the

noticeable effect on the values of f(t) and g(t). This effect was negligible in the

previous case, when the excitation was with the laser pulse of 117 fs duration

(see Fig. 5.4a, c, e).

It can be noticed that the sign of the function g(t) at the current laser pulse

parameters (shown on Figs. 5.7a, c) is different from that in the previous case

(shown on Fig. 5.4a, c, e). The spin trajectories triggered by the two laser

pulses at zero magnetic field are also dissimilar (Figs. 5.7b and 5.4b). This

difference is due to the different central frequencies of the laser pulse, which

result in the different spin dynamics as was discussed in the Chapter 3 (see

the discussion of Fig. (3.7)).

The further distinction from the situation in the previous section is that

the spin vector trajectory is influenced much more by the magnetic field (see

Fig. 5.7b, d). Now, the Larmor precession period is comparable with the laser

pulse duration (TB20/Tdr2 = 6), and the spin has enough time to rotate around

the magnetic field during the excitation. However, the Larmor oscillation

should not influence the dynamics of the Sx components and should not lead

to the reduction of the amplitude AS. Thus, the reduction of AS results from

the decrease of f(t) due to the small spectral width of the laser pulse.

This statement can be checked by applying a laser pulse of the equal du-

ration, but larger spectral width. A rectangular shaped laser pulse with the

duration of 300 fs has the spectral width of 12 meV, which is two times longer

than that of the Gaussian pulse of the same duration. Thus, the effect of the

magnetic field on the amplitude AS due to the action of the rectangular shaped

laser pulse of the same duration and central frequency is calculated. The rela-

tive difference between the amplitudes at B = 0 and B = 20 T is5 ∆Arec
S = 7%.

The same value in the previous case, when the Gaussian shaped pulse with

the same duration was applied, was ∆AGauss
S = 26%. Thus, the values of the

induced amplitudes are affected by an external magnetic field if a laser pulse

spectral width is comparable with the Zeeman interaction. However, they are

not necessary affected, if a laser pulse duration is comparable to a precession

period.

5The relative difference is calculated as ∆AS =
A

(B0)
S

−A
(B20)
S

0.5(A
(B0)
S

+A
(B20)
S

)
× 100%, where A

(B0)
S is

the amplitude at zero magnetic field, A
(B20)
S is the amplitude at the magnetic field of 20 T.
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5.5 Conclusions

The interplay between the spin dynamics triggered by a laser pulse and an

external magnetic field during the excitation is studied in this Chapter. It

is shown that the magnetic field affects the spin dynamics during the action

of a laser pulse even if the pulse duration is several tens times higher than

the induced magnetic precession period. This results in the accumulation of

the Larmor oscillation phase already during the excitation. This conclusion

does not concern only Larmor precessions, but is general for any other types

of induced oscillations [43].

The second effect is the decrease of the induced oscillation amplitude with

the increase of the magnetic field. However, this effect becomes relevant, if the

laser pulse spectral width is comparable with the Zeeman interaction. Namely,

if the ratio of the laser pulse spectral width to the Zeeman interaction energy

is less than five. Therefore, if the Zeeman interaction is rather large, laser

pulses with large spectral width are more advantageous than laser pulses of

the same duration, but smaller spectral width.

The effect of an applied magnetic field on the induced amplitude results

from the dependence of transition amplitudes on the energies of involved sys-

tem states. This leads to the dependence of the functions, representing the

action of a laser pulse in the spin equations of motion, on an applied mag-

netic field. However, if a laser spectral width is much higher than the Zeeman

interaction, then this dependence can be ignored.
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Chapter 6

Modeling of the ultrafast

inverse Faraday effect in

magnetic crystals

The role of three local electron interactions for the IFE were studied in the

previous Chapters. Namely, the spin-orbit coupling, the electron correlations

within a given atom (Chapter 3) and Zeeman interaction (Chapter 5) were

investigated. However, non-local interactions are also relevant for materials’

magneto-optical properties [51]. Thus, interactions typical for a solid state, i.

e. crystal field and exchange interactions, are considered in this Chapter.

It was shown in Chapter 3 that the presence of the spin-orbit coupling

is necessary for the IFE, and the strength of the effect is determined by the

magnitude of SOC. It will be shown in this Chapter that the IFE is also

strongly affected by the crystal field interactions. Section 6.1 provides an

example of an analysis of the IFE including both spin-orbit and crystal field

interactions. This example demonstrates that the strength of the IFE strongly

depends on the crystal field acting on an atom/ion.

Section 6.2 provides a method to simulate the magnetization dynamics in a

magnetic material triggered by the ultrafast IFE. The mechanism of the exci-

tation of magnetic precessions and induction of a magnetic moment in an easy

plane antiferromagnet will be demonstrated. The study of the magnetization

dynamics in an antiferromagnet is motivated by the observations of Satoh et

al. in Ref. [43]. They showed that the IFE triggered terahertz spin oscillations

in the compensated antiferromagnet NiO. These observations were quite unex-

pected, since they were against the suggestion that the IFE is possible only in

a material with a non-zero magnetic moment [3]. According to this suggestion,
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Chapter 6. Modeling of the IFE in magnetic crystals

an effective magnetic field, induced by the IFE, has to produce a torque to a

material’s net magnetic moment to induce the precession of magnetization.

The phenomenological model of Ref. [124] indeed predicted the possibility

of the ultrafast IFE in an antiferromagnet. However, this approach has several

disadvantages for the interpretation of Satoh et al.’s experiment. First, the

model is based on an assumption that the duration of a laser pulse is much

shorter than the period of an induced spin precession. It was discussed in

the previous Chapter that this approximation cannot be applied to describe

laser-induced terahertz magnetic precessions. Second, the model considers the

light excitation as an ultrashort magnetic pulse. Therefore, it does not provide

the information about the dependence of the effect on laser pulse and material

parameters.

The method described in Section 6.2, first, does not make any assumptions

on the pulse duration and, thus, can be used for the interpretation of the subpi-

cosecond magnetization dynamics. Second, the technique involves the analysis

of material properties and thus provides the details about the dependence of

the effect on a material structure.

6.1 Crystal field and spin-orbit coupling

6.1.1 Crystal field

Consider an ion in a crystalline environment. Additionally to the electron

interactions of a free ion, there appear the Coulomb interactions between each

electron and all the charges external to the ion [134, 135]. The crystal field

potential due to the surrounding ions at the location of the k-th unpaired

electron of the ion, is

V (rk) =
∑

j

Zj
|Rj − rk|

, (6.1)

Rj and rk are the positions of the j-th ligand ion and k-th unpaired electron.

The center of the ion is taken as the origin, the summation is over all ligand

ions in a crystal.

The complete treatment of the crystal field potential is quite complicated.

But it can be simplified with the help of the crystal field theory, which treats

the neighboring ions as point charges. In this case, the potential V (rk) obeys

the Laplace’s equation and can be expanded in terms of the spherical harmonics

Y m
n with expansion coefficients Amn . Thus, the Hamiltonian describing the
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6.1. Crystal field and spin-orbit coupling

crystal field acting on the ion is

Hcr = −
ne∑

k=1

V (rk) =

∞∑

n=0

n∑

m=−n
Amn

ne∑

k=1

|rk|nY m
n (θk, φk), (6.2)

ne is the number of all unpaired electrons of the ion.

The Hamiltonian Hcr can take a convenient form with the help of Steven’s

operator equivalent method [136]. According to this method, the Hamiltonian

is first expressed in terms of the cartesian coordinates x, y and z. Then,

applying that the matrix elements of the operators involving x, y and z are

proportional to those of L̂x, L̂y and L̂z operators (or Ĵx, Ĵy and Ĵz), the

spherical harmonics are expressed via L̂x, L̂y and L̂z operators (or Ĵx, Ĵy and

Ĵz). For instance,

ne∑

k=1

Y 0
2 ∝

ne∑

k=1

(3z2k − 〈|rk|2〉) ∝ 〈r2〉
(
3Ĵ2

z − Ĵ(Ĵ + 1)
)
= 〈r2〉O0

2, (6.3)

where r is the orbital radius. O0
2 is called the operator equivalent of Y 0

2 . Thus,

the crystal field Hamiltonian can be expressed via the operator equivalents

Om
n , which are the L or J operators:

Hcr =

∞∑

n=0

n∑

m=−n
Amn Θn〈rn〉Om

n =

∞∑

n=0

n∑

m=−n
Bm
n Om

n . (6.4)

n can take values 2, 4, 6, because n cannot exceed 2L due to the orthogonality

of the spherical harmonics. Odd numbers disappear for crystals with inversion

symmetry. n = 0 gives an additive constant to the potential.

The operator equivalents Om
n can be expressed by L̂x, L̂y and L̂z operators

or Ĵx, Ĵy and Ĵz depending on whether L or J is a good quantum number.

For instance, the action of the crystal field on the 4f electrons in rare-earth-

based solids is much weaker than the spin-orbit coupling [137]. The Hund’s

rules dominate the crystal field effects in this case, and the crystal field acts

only within a given J-manifold. Thus, the crystal field Hamiltonian can be

expressed via the J operators.

The situation is different for transition metal ions (particularly 3d-ions),

for which crystal field effects are much larger than the spin-orbit coupling. J

is not a good quantum number anymore, and the crystal field mixes states

within a given (L, S) term. The crystal field Hamiltonian can be expressed

via the L operators in this case.

The operator equivalents Om
n are not always straightforwardly found as in

(6.3), since the angular momentum operators do not commute. Fortunately,

there are tables providing the operators Om
n (e. g. in [138]).
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Chapter 6. Modeling of the IFE in magnetic crystals

Figure 6.1: The energy level diagram of the 2p state split by H0 = ζsocL · S+

Hcr, where Hcr is (a) −1
3
∆(O0

2 + 2), (b) +1
3
∆(O0

2 + 2), (c)±∆O2
2 . The bold

dotted lines show the main origin of the level, the thick dotted line shows the

admixture of the other level.

6.1.2 Effect of the crystal field on the IFE

It will be shown in this subsection, that the crystal field interaction is relevant

for the IFE. This is demonstrated on a simple system in order to provide a

clear example of the effect of the crystal field interaction. The chosen system

corresponds to the case, when the crystal field interaction is expressed in terms

of L operators.

The system similar to that in Section 3.3 is taken. It consists of an electron

in the 1s state with spin aligned initially along the x axis. The excited state,

which is the 2p state, is split by the spin-orbit interaction and the crystal field

interaction, which was zero in Section 3.3. L is the good quantum number in

this case, and the crystal field Hamiltonian is expressed in terms of L opera-

tors. The crystal field is of the same order of the spin-orbit coupling, and the

corresponding Hamiltonians should be diagonalized together.

Three types of the crystal field interactions are considered. The first is

determined by four equal positive point charges, each two of them are situated

on the both sides of the x and y axis at equal distance (see Fig. 6.1a). The

second is the same as the first, but the charges are negative (see Fig. 6.1b).

The third crystal field is caused by two negative charges on the x axis, and

two positive charges on the y axis situated at equal distance and with equal

absolute values (see Fig. 6.1c).

The crystal field interaction splits the p state, but does not affect the s
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6.1. Crystal field and spin-orbit coupling

state, which is spherically symmetric. However, it shifts the energy of the s

state, since the electron interacts with the point charges. The degeneracy of

the p orbitals is removed by the crystal field. The crystalline electric field

is able to orient the electronic charge cloud into an energetically favorable

direction [134]. For instance, the py orbital is stretched along the y axis, and

px orbital is squeezed along the x axis in the third case (see Fig. 6.1c). The pz
orbital is unaffected in all three cases.

The crystal field Hamiltonians H(a)
cr , H(b)

cr and H(c)
cr describing the crystal

field on Fig. 6.1a, b, and c, and the corresponding energy splittings εx,y,z of

the orbitals px,y,z at zero spin-orbit coupling are

H(a)
cr = −∆(L̂2 − L̂2

x − L̂2
y) = −1

3
∆
(
O0

2 + 2
)

(6.5)

εx = εy = −∆, εz = 0

H(b)
cr = ∆(L̂2 − L̂2

x − L̂2
y) =

1

3
∆
(
O0

2 + 2
)

(6.6)

εx = εy = ∆, εz = 0

H(c)
cr = ∆(L̂2

y − L̂2
x) = −∆O2

2 (6.7)

εx = ∆, εy = −∆, εz = 0,

Since the wave functions at zero SOC are symmetric with respect to spin, the

spin of the s state does not reorient after the Raman transitions via the p state

(see Appendix C.3.2).

If the spin-orbit coupling is present in the system, the Hamiltonian acting

on the p state is H0 = ζsocL · S + Hcr. The p state is split into three levels,

called Kramers doublets, with the wave functions of the form

ψ±
2p = α

∣∣∣∣mL = ±1, mS = ±1

2

〉
+ β

∣∣∣∣0,∓
1

2

〉
+ γ

∣∣∣∣∓1,±1

2

〉
. (6.8)

The presence of the doublet is the consequence of the Kramer’s theorem, which

says that the energy levels of systems with an odd total number of electrons

(or other fermions) remain at least doubly degenerate in the presence of purely

electric fields due to the time reversal symmetry.

The Hamiltonians H0 = ζsocL · S + H(a,b,c)
cr are diagonalized in Appendix

C.3.2 and the corresponding wave functions of the p state are obtained. Let

us first consider the effect of the fields H(a)
cr and H(b)

cr . The corresponding wave
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Figure 6.2: The final spin-flip probability depending on the detuning ω0 − ω2p

at the crystal fields (a), (b) and (c) with ∆ = 20 meV and without crystal

field. ζsoc = 20 meV for all plots. The laser pulse parameters are the same as

described in Chapter 3.

functions ψ2p
k,± of the three doublets obtain the form

ψ2p
1± =

∣∣±1,±1/2
〉

ψ2p
2± = α2

∣∣±1,∓1/2〉+ β2|0,±1/2
〉

(6.9)

ψ2p
3± = α3

∣∣±1,∓1/2〉+ β3|0,±1/2
〉

|α2|2 + |α3|2 = 1, |α2,3| = |β3,2|,

It can be noticed, that the wave functions ψ2p
1± are of pure 2p3/2 origin (see

Eq. (C.1.5) in Appendix C.1). Whereas, the wave functions of the level 2 are

of 2p3/2 origin (corresponds to 2p3/2 at ∆ = 0) with the admixture of the wave

functions of 2p1/2, and the level 3 is of 2p1/2 origin with the admixture of the

wave functions of the 2p3/2.

The transitions from the s state induced by left-circularly polarized light are

allowed only to the states with the projection mL = 1. Thus, the transitions

from the state with the spin-up component are allowed only to the level 1, the

transitions of the state with the spin-down component are allowed to levels 2

and 3. The energy level diagrams for the case ζsoc = ∆ are shown on Figs. 6.1a

and b.

The IFE in the systems with the crystal fields (a) and (b) and zero crystal

field are compared by studying the spin-flip probabilities. The dependencies
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of the final spin-flip probability on the laser frequency are shown on Fig. 6.2.

From the dependencies one can see that the IFE is higher in the systems with

the two crystal fields compared to that at zero crystal field. This is due to the

energy separation of the level 1 and level 2, which are degenerate without the

crystal field. Their splitting provides the additional difference in the transition

amplitudes for the spin-up and spin-down components, which is necessary for

the IFE. Therefore, the spin-flip probability at laser frequencies in the vicinity

of the levels 1 and 2 is higher than that at zero crystal field (the left peaks on

the plots (a) and (b) on Fig. 6.2).

However, the spin-flip probability at the laser frequencies in the vicinity of

the level 3 is lower at the crystal field (a) than that at zero crystal field (the

right peak on the plot (a) on Fig. 6.2). The Raman transition amplitudes via

the level 3 from the s state with the spin-down component are proportional

to |α3|2 (see Eq. (C.3.2.15)). The coefficient |α3| is lowered due to the crystal

field (a) resulting in the decrease of the spin-flip probability. However, |α3|
is increased due to the crystal field (b), therefore the spin-flip probability at

frequencies in the vicinity of the level 3 is higher at the crystal field (b) than

at zero crystal field (the right peak on the plot (b) on Fig. 6.2).

Let us now consider the crystal field (c). The wave functions of the three

doublets of the excited state are

ψk±2p = αk

∣∣∣∣±1,±1

2

〉
+ βk

∣∣∣∣0,∓
1

2

〉
+ γk

∣∣∣∣∓1,±1

2

〉
(6.10)

αk 6= 0, βk 6= 0, γk 6= 0, k = 1, 2, 3.

It is shown in Appendix C.3.2 that the energies of the levels and the transition

amplitudes do not depend on the sign of ∆ of the crystal field (c). The energy

level diagrams for the case ∆ = ±ζsoc are shown on Figs. 6.1c.

The transitions induced by the left-circularly polarized light are allowed for

both spin components to every of the three levels. Therefore, the crystal field

(c) increases the symmetry of the transitions for spin-up and spin-down. Thus,

the IFE is decreased due to this crystal field (see Fig. 6.2). The situation by the

crystal fields (a) and (b) is different, since they produced “additional” selection

rules by forbidding transitions to the level 2 for the spin-up component.

The difference between the effects of the crystal fields (a) and (b), and (c)

on the spin-flip probability can be understood by comparing their dependence
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on the coefficients entering the doublets

w
(a,b)
s-f (t) ∝

∣∣∣Γ1(t)− |α(a,b)
2 |2Γ2(t)− (1− |α(a,b)

2 |2)Γ3(t)
∣∣∣
2

(6.11)

w
(c)
s-f (t) =∝

∣∣∣∣∣

3∑

k

(|α(c)
k |2 − |γ(c)k |2)Γk(t)

∣∣∣∣∣

2

,

where the functions Γk(t) depend on the energies of the excited states. It can

be noticed that the factors before Γk(t) are higher for the crystal fields (a) and

(b) than that for the crystal field (c).

These examples demonstrate that the crystal field interaction plays an im-

portant role for the strength of the IFE. Different types of a crystal field can

lead either to increase or reduction of the effect. The analysis of the interplay

of the crystal field effect and spin-orbit coupling in a material provides an idea

about its effectiveness for the IFE. Such analysis is advantageous for a search

among many possible structures for materials with the most strongest IFE,

since this technique does not involve complicated electron structure calcula-

tions.

6.2 Dynamics of an easy plane antiferromag-

net due to the ultrafast inverse Faraday

effect

In this Section, the dynamics of two antiferromagnetically coupled sub-lattices

in a crystal field environment induced by the ultrafast IFE is described. Apply-

ing the Weiss mean field theory for the exchange interaction [134] and assuming

that atoms in the systems are excited coherently, the problem is reduced to

two coupled systems each consisting of one atom.

The magnetic moment of each system changes due to the IFE, and so does

the effective magnetic field caused by the exchange interaction, which acts on

the other system. Therefore, the time evolutions of both systems depend on

each other, and their dynamics has to be calculated simultaneously. The time

evolution of the vectors M and L, which are proportional to the ferromagnetic

and antiferromagnetic vectors1 will be derived.

The equations of motion for the components of vectors M and L will be

obtained using the technique introduced in the Chapter 4. Thus, the momen-

1Ferromagnetic vector is the difference and antiferromagnetic vector is the sum of mag-

netic moments of sub-latices of an antiferromagnet/ferrimagnet.

106



6.2. Dynamics of the antiferromagnet due to the IFE

tum operator, which provides the time evolutions of magnetic vectors induced

by the ultrafast IFE, will be derived. It will be shown that the dynamics of

the considered antiferromagnetic system during and after the excitation can

be fully described by fifteen first order nonlinear differential equations. All

details about the derivation and calculation of the introduced equations can

be found in Appendix E.

6.2.1 Ground and excited states of two antiferromag-

netically coupled sub-lattices

The antiferromagnet is treated in the framework of the Weiss mean field theory

[134]. According to this theory, the quantum fluctuations can be neglected, and

the exchange interaction between any two atoms is considered as the Zeeman

interaction of the spin of each atom with the magnetic field, which is the spin

average of the other atom. This means that the HamiltonianHex12 = Jex0Ŝ1·Ŝ2

is substituted by Hex = Jex0(Ŝ1〈S2〉 + 〈S1〉Ŝ2). With the assumption that

the exchange interaction only with the next neighbor atoms is relevant, the

Hamiltonian acting on atom i is expressed as

Hex(i) = ZJex0〈Snn〉Ŝi, (6.12)

Z is the number of the neighboring atoms, 〈Snn〉 is the average spin of a next

neighbor atom. Using that the magnetic moment of an atom in the case of the

LS-coupling is proportional to gJJ = L + 2S (gJ is the Landé factor), where

J = L + S, the exchange interaction acting on atom i can be expressed as

Hex(i) = ZJex0(gL − 1)2〈Jnn〉Ĵi. (6.13)

The approximation is valid, when the fluctuations of the effective magnetic field

Z〈Jnn〉 are small, which is true, when each spin has many nearest neighbors.

The chosen system consists of two equal sub-lattices coupled antiferromag-

netically. Every atom belonging to the sub-lattice 1 is surrounded by Z atoms

belonging to the sub-lattice 2 and vice versa. The exchange interaction acting

on atoms belonging to the sub-lattices 1 and 2 can be written in the framework

of the Weiss mean field theory as

Hex1 = Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1) (6.14)

Hex2 = Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2),

Jex = ZJex0(gL − 1)2.
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A crystal field with uniaxial symmetry in the z-direction acts on the sys-

tems. The spin-orbit coupling is assumed to be much larger than the crystal

field, and the Hamiltonian can be expressed via the total momentum opera-

tors. In some cases, the term B0
2O0

2 is sufficient to describe an uniaxial crystal

field [134]. Thus the crystal field Hamiltonian Hcr = B0
2O0

2 = ∆
(
3Ĵ2

z − J2
)
.

It is assumed that the ground state of each atom in a system is characterized

by a term with the total angular momentum J equal to 3/2. Thus, the total

Hamiltonian acting on each atom is

H0 = Hex1 +Hex2 +∆

(
3Ĵ2

z1 −
15

4

)
+∆

(
3Ĵ2

z2 −
15

4

)
. (6.15)

The crystal field is a possible source of magnetic anisotropy, and the ground

state alignment of the magnetic vectors are determined by the sign of ∆ [134].

∆ > 0 is taken, which makes the alignment of the magnetic moment along

the z axis energetically unfavorable, and results in the xy plane being the

easy plane. It is assumed that the neighboring terms are separated from the

ground state by an energy, which is much larger than the spectral width of a

laser pulse, which will be used for the excitation.

The initial direction of the magnetic vectors of the sub-lattices is chosen as

the x axis. The energy of the system is the lowest, when the absolute values of

Jx1 and Jx2 are the largest, but the vectors are antiparallel. Thus, the initial

wave functions, which are spinors 2, have the form

Ψ
(1)
0 =




a

b

b

a


 , Ψ

(2)
0 =




a

−b
b

−a


 , Im(a) = Im(b) = 0, a > 0, b > 0. (6.16)

It can be easily checked that 〈Ψ(1)
0 |Ĵx1|Ψ(1)

0 〉 = −〈Ψ(2)
0 |Ĵx2|Ψ(2)

0 〉, and

〈Ψ(1,2)
0 |Ĵy1,2|Ψ(1,2)

0 〉 = 0, 〈Ψ(1,2)
0 |Ĵz1,2|Ψ(1,2)

0 〉 = 0. The values of a and b de-

pend on the ratio between the exchange interaction and the crystal field (see

Appendix E.1). The crystal field interaction leads to partial quenching of the

total magnetic moment, and the expectation values of the Ĵx1,2 operators are

smaller than ±3/2.

It is assumed, that the laser-induced Raman transitions of the atoms of

each sub-lattice go via their excited states characterized by the term with

J = 5/2. The other excited states, e. g. with J = 3/2 and 1/2, are assumed to

2The k-th component of a spinor is the projection of the wave function on a state |Jz =

J − k〉 (see Section 3.4 for details).
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|ex, Jz = ±5
2
〉 |ex, Jz = ±3

2
〉 |ex, Jz = ±1

2
〉

|g, Jz = 3/2〉 −
√

2
3
d0 0 0

|g, Jz = 1/2〉 0 −
√

1
5
d0 0

|g, Jz = −1/2〉 0 0 −
√

1
10
d0

|g, Jz = −3/2〉 0 0 −
√

1
30
d0

Table 6.1: The dipole matrix elements of the transitions from a ground state

|g, Jz = M〉 to an excited state |ex, Jz = M + 1〉 for left-circularly polarized

light.

be energetically inaccessible for the applied laser pulse. It is also assumed, that

the exchange interaction between the sub-lattices negligibly affects the excited

state. Thus, the Hamiltonian for each system is simply ∆1

(
3Ĵ2

z1,2 − Ĵ2
1,2

)
3. It

is already diagonal and the eigenstates and energies of the excited state are

|Jz1,2 = ±5/2〉, εex1 = εex + 10∆1

|Jz1,2 = ±3/2〉, εex2 = εex + 2∆1 (6.17)

|Jz1,2 = ±1/2〉, εex3 = εex − 8∆1,

εex = 2 meV is the energy of the excited state in the absence of the crystal

field. The crystal field constant ∆1 = 3 meV is taken.

Let us examine the selection rules for the transitions from the ground state

|g〉 to the excited state |ex〉 for an excitation by left-circularly polarized light.

It was discussed in Section 3.4 that a dipole matrix element of a transition

from a state with a total moment J and projection Jz = m to a state with

total moment J + 1 and Jz = m+ 1 by r+ = (x+ iy)/
√
2 is [131]

〈J + 1m+ 1|r+|J m〉 = −
√

(J +m+ 1)(J +m+ 2)

(J + 1)(2J + 1)(2J + 3)
〈J + 1|r|J〉. (6.18)

This relation is applied to obtain the dipole matrix elements shown in Table

6.1. d0 is a reduced dipole matrix element: d0 = 〈ex, J = 5/2|r|g, J = 3/2〉.
d0 = 1 a. u. is taken for simplicity.

3Note that the crystal field constant is not necessary the same as that of the ground

state, since it depends on the orbital radius.
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Chapter 6. Modeling of the IFE in magnetic crystals

6.2.2 Equations of motion

The equations of motion, which describe the dynamics of the antiferromagnetic

system induced by the ultrafast inverse Faraday effect, are introduced in this

subsection. The IFE is triggered by a left-circularly polarized Gaussian-shaped

laser pulse with the electric field

E = −nx + iny√
2

Ef(t/T ) sin(ω0t), (6.19)

where f(t/T ) = e−t
2/T 2

/
√
π3. The pulse if of 117 fs duration (see Section

3.1 for details) with the peak intensity of 2 × 1010 W/cm2 and the fluence 8

mJ/cm2. The fluence of the pulse is chosen 4 times higher compared to the

that used in the Chapter 3, because the electron interactions acting on the

ground state of the current system are quite high and resist to the magnetic

moment reorientation.

It is assumed that all atoms belonging to the same sub-lattice are excited

coherently by a laser pulse. Thus, the dynamics of all atoms belonging to

one sub-lattice can be simulated by one system. Therefore, the system 1

describes the dynamics of atoms belonging to the sub-lattice 1 and the system

2 - of atoms belonging to the sub-lattice 2. The dynamics of these systems is

determined by the effective Hamiltonians Hex1+H(1)
cr +H(1)

J and Hex2+H(2)
cr +

H(2)
J , where

Hex1 = Jex

(
Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1

)

Hex2 = Jex

(
Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2

)
,

H(1,2)
cr = ∆

(
Ĵ2
z1,2 +

15

4

)
.

It was shown in the Chapter 4 that the action of the IFE on a system

characterized by the total momentum J = 3/2 can be written in the form of

the momentum operator

H(1,2)
J =−

4∑

a

γ(1,2)a n(1,2)
a (6.20)

+
1

2

4∑

a,b

1

(papb)2

(
ν(1,2)a − ν

(1,2)
b

)(
n
(1,2)
ab− n̂

(1,2)
ab+ − n

(1,2)
ab+ n̂

(1,2)
ab−

)
,
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6.2. Dynamics of the antiferromagnet due to the IFE

where p2 = p3 = 1, p1 = p4 =
√
3
2
. n̂

(1)
ab± and n̂

(2)
ab± are J operators4 acting

on system 1 and 2 correspondingly. They can be expressed by a combination

of Ĵx1,2, Ĵy1,2, Ĵz1,2 and Ĵ2
1,2. These operators can be represented by 4 × 4

matrices, which elements are (indices 1 and 2 are omitted)

If b > a, (nab+)ab = (nab+)ba = papb, (nab−)ab = −ipapb, (nab−)ba = ipapb,

If a = b, n̂aa± = n̂a, (na)aa = 1 (6.21)

(nab±)cd = 0, if c 6= a, c 6= b, d 6= a, d 6= b or a > b.

For example, n̂12+ =




0
√
3
2

0 0√
3
2

0 0 0

0 0 0 0

0 0 0 0


 , n̂12− =




0 −i
√
3
2

0 0

i
√
3
2

0 0 0

0 0 0 0

0 0 0 0


. The

usual momentum operators are connected to the operators n̂
(1,2)
kl± by

Ĵx1,x2 = n̂
(1,2)
12+ + n̂

(1,2)
23+ + n̂

(1,2)
34+ (6.22)

Ĵy1,y2 = n̂
(1,2)
12− + n̂

(1,2)
23− + n̂

(1,2)
34−

Ĵz1,z2 =
3

2
n̂
(1,2)
1 +

1

2
n̂
(1,2)
2 − 1

2
n̂
(1,2)
3 − 3

2
n̂
(1,2)
4

Ĵ2
1,2 =

15

4

(
n̂
(1,2)
1 + n̂

(1,2)
2 + n̂

(1,2)
3 + n̂

(1,2)
4

)
.

n
(1,2)
kl± are the expectation values of n̂

(1,2)
kl± operators: n

(1,2)
kl± = 〈Ψ(1,2)

g |n̂(1,2)
kl± |Ψ(1,2)

g 〉.
The coefficients ν

(1,2)
k and γ

(1,2)
k will be given at the end of this subsection. It

will be also shown there that ν
(1)
k = ν

(2)
k = ν and γ

(1)
k = γ

(2)
k = γ.

It is more convenient to consider the dynamics of vectors M = M1 +

M2 and L = M1 − M2, where M1,2 = (Jx1,x2, Jy1,y2, Jz1,z2). The vectors M

and L are proportional to ferromagnetic and antiferromagnetic vectors of the

antiferromagnet. The equations of motion of the componentsMα and Lα of the

vectors M and L are given by the commutator with the effective Hamiltonian

acting on the system:

iM ′
α = 〈[M̂α,H0 +HJ ]〉, iL′

α = 〈[L̂α,H0 +HJ ]〉
H0 = H(1)

0 +H(2)
0 =

[
H(1)

cr +Hex1

]
+
[
H(2)

cr +Hex2

]
(6.23)

HJ = H(1)
J +H(2)

J ,

where M̂α = Ĵα1 + Ĵα2 and L̂ = Ĵα1 − Ĵα2.

4The operator HJ is expressed via operators n̂ab± instead of N̂ab± for convenience. They

are related to each other by: if a 6= b n̂ab± = papbN̂ab±, else n̂aa± = n̂a = N̂a.
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Chapter 6. Modeling of the IFE in magnetic crystals

The components Mx(t), My(t) and Lz(t) are zero during and after the

excitation for the following reason. First, it was shown in Chapter 4 that if

two systems initially had equal z and opposite x and y components of magnetic

vectors, then they would remain with equal z and opposite x and y components

due to the dynamics induced by the IFE. Second, the exchange interaction has

no effect on Mx and My, and also does not affects Lz , if Mx = 0 and My = 0

(see Appendix E for details). And finally, it holds for the crystal field Hcr that

if Mx and My are initially zero, they would remain zero. Hcr has no effect on

Lz. Therefore, all interaction acting on the systems demand that their x and y

projections of the magnetic vectors are opposite, and z projections are equal,

resulting in Mx(t) = 0, My(t) = 0 and Lz(t) = 0.

The equations of motion of the remaining components are

Mx =0, My = 0, Lz = 0 (6.24)

L′
x =F0(νk, mk)Lx + g(γk)Ly + Fxy(νk, l12+, l34+) +Gxy(γk, l12−, l34−)

+ 3∆(−2l12− + 2l34−)− JexLyMz

L′
y =F0(νk, mk)Ly − g(γk)Lx + Fxy(νk, l12−, l34−)−Gxy(γk, l12+, l34+)

+ 3∆(2l12+ − 2l34+) + JexLxMz

M ′
z =F0(νk, mk)Mz + Fz(νk, mk)Mz ,

where mkl± and lkl± are the expectation values of the operators m̂kl± = n̂
(1)
kl±+

n̂
(2)
kl± and l̂kl± = n̂

(1)
kl±−n̂

(2)
kl±. The functions F0(νk, mk), g(γk), Fxy(νk, l12±, l34±),

Gxy(γk, l12±, l34±) and Fz(νk, mk) are defined in Appendix E.

The set of six equations is not sufficient to describe the dynamics of the

whole system, because, apart from the six variables Mx,y,z and Lx,y,z, the func-

tionsmk and lab± also enter Eq. (6.24). The time derivative of each expectation

value, which enters (6.24), has to be found in order to obtain the complete set

of the equations. The corresponding operators have to be commuted with the

Hamiltonian, thereby new operators appear in the equations. Therefore, it is

convenient to solve the equations of motion for the expectation values mab±
and lab±, and express Mx,y,z and Lx,y,z via these variables using

L̂x = l̂12+ + l̂23+ + l̂34+

L̂y = l̂12− + l̂23− + l̂34− (6.25)

M̂z =
3

2
m̂1 +

1

2
m̂2 −

1

2
m̂3 −

3

4
m̂4.

The full set of the equations involves 16 variables: l12±, l23±, l34±, l14±,
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6.2. Dynamics of the antiferromagnet due to the IFE

m13±, m24±, m1, m2, m3 and m4, the equations of motion for which are

m′
ab± =

(
−

4∑

k=1

νkmk + νa + νb

)
mab± ± (γa − γb)mab∓ − i〈[m̂ab±,H0]〉

l′ab± =

(
−

4∑

k=1

νkmk + νa + νb

)
lab± ± (γa − γb)lab∓ − i〈[l̂ab±,H0]〉. (6.26)

The commutators of m̂ab± and l̂ab± with the Hamiltonian H0, which can be

expressed as

H0 =
Jex

2

(
−LxL̂x − LyL̂y +MzM̂z

)
+ 3∆

(
M̂2

z + L̂2
z

2
+
Ĵ2
1 + Ĵ2

2

3

)
, (6.27)

are given in Table E.1 in Appendix E. All other variables are zero at any time:

m12±(t) = 0, m23±(t) = 0, m34±(t) = 0, m14±(t) = 0, l13±(t) = 0, l24±(t) = 0

and la(t) = 0. Applying that m1+m2+m3+m4 =
∑4

a=1 n
(1)
a +

∑4
a=1 n

(2)
a = 2,

the system describing the dynamics of the antiferromagnet can be reduced to

15 first order differential equations.

Let us come back to the functions ν
(1,2)
k and γ

(1,2)
k . They depend on the

properties of the excitation, energy levels of a system and dipole matrix ele-

ments of involved transitions. They should be equal for systems with equal

electronic structure excited by the same laser pulse independent on the sys-

tems’ initial states. However, the situation is more complicated in our case.

The exchange part of the Hamiltonian H0 acting on the ground state manifold

of atoms belonging to the sub-lattice 1 depends on the magnetic vector of the

sub-lattice 2 and vice versa. The orientation and magnitude of the magnetic

vectors of the sub-lattices are changing during the excitation. This means that

ν
(1)
k and γ

(1)
k of the IFE-momentum operator acting on the system 1 depend

on the magnetic state of the system 2. ν
(1)
k and γ

(1)
k at any time t during the

excitation depend on the values of Jx2(t), Jy2(t) and Jz2(t), and vice versa

for ν
(2)
k and γ

(2)
k . However, the coefficients for both systems are indeed equal:

ν
(1)
k = ν

(2)
k = ν and γ

(1)
k = γ

(2)
k = γ due to symmetry considerations (see Ap-

pendix E.3.1). Therefore, the functions νk and γk need to be calculated only

for one system.

The functions νk and γk are derived for the system 1. They are related to

the vector A, which contains the transition amplitudes from the states with

different Jz1 projections5, by the relations νk = Re (Yk) and γk = Im (Yk),

5See Section 4.1.1 and Eq. (E.2.5) for details.
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Chapter 6. Modeling of the IFE in magnetic crystals

where Yk = [UA′]k/[UA]k. [UA′]k and [UA]k are the k-th elements of the

vectors UA′ and UA.

U is the time evolution operator, which is related to the HamiltonianH(1)
0 =

H(1)
cr +Hex1 by iU = H(1)

0 U . H(1)
0 consists of two parts: the time-independent

crystal field interaction Hcr and exchange interaction part Hex1, which depends

on the magnetic vector of the sub-lattice 2:

Hex1(t) = Jex

(
−Lx(t)Ĵx1 − Ly(t)Ĵy1 +Mz(t)Ĵz1

)
/2.

Thus, H(1)
0 is time-dependent and the time evolution operator cannot be writ-

ten in the form of matrix exponential U 6= e−iH
(1)
0 t. The action of the operator

U on a vector Ψ can be derived numerically with the procedure described in

Appendix E.3.1. Note that since the time evolution operator U depends on

Lx(t), Ly(t) and Mz(t), the functions νk(t) and γk(t) are also dependent on

Lx(t), Ly(t) and Mz(t).

The elements of A are obtained using Eqs. (A.2.9) and (A.2.11) and apply-

ing the selection rules for the excitation by left-circularly polarized light given

in Table 6.1. The k-th element of A is

if P0k 6= 0, Ak = 1− C(1,2)
k /P

(1,2)
0k , else A(1,2)

k = 0, (6.28)

where P0k is the k-th element of the initial wave function Ψ
(1)
g (0) (see Eq. 6.16).

Ck is the k-th element of the vector

C = E2|d0|2
[∫ t

−∞
dt′ U−1(t′)

]



2
3
F̂ (t′, εex1)Q1(t

′)
1
5
F̂ (t′, εex2)Q2(t

′)
1
10
F̂ (t′, εex3)Q3(t

′)
1
30
F̂ (t′, εex3)Q4(t

′)


 , Q(t) = U(t)Ψ(1)

g (0).

(6.29)

The action of the operator F̂ (t′, εexj) on Qk(t
′) is defined by

F̂ (t′, εexj)Qk(t
′) =f(t′/T ) cos(ω0t

′)e−iεexjt
′

(6.30)

×
∫ t′′

−∞
dt′′f(t′′/T ) cos(ω0t

′′)eiεexjt
′′
Qk(t

′′).

It was discussed in Chapter 4 that the inequality of the elements of the vector

A makes the IFE possible. In our case, all four elements Ak are different. As in

the previous systems, this is due to the SOC, which is responsible for different

dipole matrix elements of the transitions from the states with different Jz1
projections. The crystal field in the excited state enhances the diversity of the

vector A elements, because it makes the factors εexj entering Ak different.
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6.2. Dynamics of the antiferromagnet due to the IFE

(a) Initial alignment (b) Circular mode (c) Elliptical mode

Figure 6.3: (a) The initial alignment of the magnetic vectors. (b) The circular

mode. (c) The elliptical mode.

The calculation of the functions νk and γk can be simplified in some cases.

As was discussed in Chapter 5, if the pump laser pulse spectral width ∆ωsw is

much larger than the splitting of the ground state manifold, then the depen-

dence of νk and γk on the time evolution operator U can be neglected. When

this condition does not hold, the calculation still can be simplified in the case,

then the laser pulse spectral width is much larger than the variation of the

exchange interaction: ∆ωsw ≫ |Hex1(t)−Hex1(t = 0)|. If this relation is true,

then Hex1 can be assumed constant for the calculation of the functions νk and

γk, and their dependence on Lx(t), Ly(t) and Mz(t) can be ignored.

6.2.3 Results

It was shown in the previous subsection that the action of the ultrafast IFE

on our system results in the rotation of the vector L and the induction of the

vector M, which was initially zero. Thereby, the components Lx, Ly and Mz

change in time, whileMx,My and Lz remain zero. This means that the vectors

M1 and M2, which are initially aligned antiparallel (see Fig. 6.3a), move in

such way that their x and y projections remain opposite and z projections are

equal (see Figs. 6.3b and c).

Figs. 6.4 and 6.5 show the dynamics of the vectors Lx, Ly and Mz and

corresponding 3D picture of the vectors M1 and M2 during and after the exci-

tation obtained by the numerical solution of the 15 differential equations 6.26.

Five situations are considered: zero crystal field and the crystal field one order

smaller than the exchange interaction (Figs.6.4a-d), exchange interaction ≈
crystal field (Figs.6.4e and f), and zero exchange and the exchange interaction

one order smaller than the crystal field (Figs.6.5a-d).

As seen from Figs. 6.4 and 6.5, the Mz component changes only during the

action of light. This is because the exchange interaction and the crystal field

do not act on Mz (see Eq. 6.24). Thus, it changes only during the excitation

and remains constant after it. However, all interactions act on Lx and Ly
components. Thus, they are time-dependent during and after the excitation.

Let us first look into their dynamics due to exchange interaction and crystal
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Left column: the time evolutions of Lx, Ly andMz. Right column:

The corresponding 3D-picture showing the time evolutions of the vectors M1

(in red) and M2 (in blue). Dotted yellow lines show the time evolutions of M1

and M2 during the excitation. Jex = 3 meV. The crystal field increases from

up to down: (a), (b) ∆ = 0 meV; (c), (d) ∆ = 0.2 meV; (e),(f) ∆ = 2 meV.

116



6.2. Dynamics of the antiferromagnet due to the IFE

(a) (b)

(c) (d)

Figure 6.5: Left column: the time evolutions of Lx, Ly andMz. Right column:

The corresponding 3D-picture showing the time evolutions of the vectors M1

(in red) and M2 (in blue). Dotted yellow lines show the time evolutions of

M1 and M2 during the excitation. ∆ = 2 meV. The exchange interaction

decreases from up to down: (a), (b) Jex = 0.3 (c), (d) Jex = 0 meV.

field separately.

Zero crystal field

Assume that the crystal field acting on the ground state is much smaller than

the exchange interaction. Let us examine, what changes for the system (6.24),

which describes the dynamics of the vectors M and L during and after the

action of the laser pulse. Although the crystal field term disappeared, the

system (6.24) still includes the variables l̂12±, l̂34± and m̂a due to the excitation.

The operators l̂ab± and m̂a have to be commuted with L̂x, L̂y and M̂z, thereby,

the new variables appear (see Table E.1). This again results in 15 equations,
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describing the motion of the vectors M and L during the excitation.

The factors γk and νk, with which lab± and ma enter the system 6.24, are

zero after the action of the laser pulse. Thus, no additional variables enter the

system (6.24) after the excitation. Eq. (6.24) can be rewritten as

Mz(t > τp) =Mz0 = const, ωJ = JexMz0

L′
x = −ωJLy (6.31)

L′
y = ωJLx

Lz =Mx =My = 0.

Thus, a circular rotation of the vectors M1 and M2 around the z axis with a

frequency proportional to the value ofMz is excited by the IFE (see Figs. 6.3b

and 6.4a, b).

Zero exchange interaction

Now, assume the reverse situation, when the exchange interaction is much

weaker than the crystal field. The unperturbed Hamiltonian in this case is

H0 = H(1)
cr + H(2)

cr . The Hamiltonians H(1,2)
cr do not depend on time and are

diagonal. Therefore, the time evolution operators U (1,2) = e−iH
(1,2)
cr t are simply

diagonal matrices, which considerably simplifies the calculation of the functions

νk and γk.

The next simplification is that the system describing the dynamics of the

vectors M and L can be reduced to nine equations. Additional variables do

not appear, when the operators l̂ab± and m̂a are commuted with the crystal

field Hamiltonian (see Table E.1). Thus, the dynamics during the excitation

is described only by nine differential equations involving m1, m2, m3, l12±,
l23±, l34±. After the excitation, the system is described by four differential

equations. Its solution leads to

Lx = A cos(6∆t+ φA) +B cos(6∆t− φB) + Cx

Ly = A sin(6∆t+ φA)−B sin(6∆t− φB) + Cy (6.32)

Mz = const, Mx =My = 0

φA, φB, A, B, Cx and Cy are constants defined in Appendix E.4.2. These

equations describe the elliptical rotation of the vectors M1 and M2 around

the z axis (see Fig. 6.3c). However, this mode cannot be excited without the

exchange interaction. It is shown in Appendix E.4.2 that the transitions are

allowed only to the states with the same energy as the ground state in this

case. Thus, although the components Lx, Ly and Mz are changed during the

excitation, they do not precess (see Fig. 6.5c and d).
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Exchange interaction and crystal field

It was shown in the previous subsection that the dynamics of the system after

the excitation is described by 15 differential equations in the case, when both

interaction are present. Both vectors M and L change during the action of

the pulse. After the excitation, the vector M is constant and the vector L

precesses.

The precession of the vector L is determined by circular and elliptical mode

resulting in rather complicated trajectory (see Figs. 6.4c-f and 6.5a-b). This

trajectory is described by 15 differential equations even after the excitation.

This is due to the presence of the terms 3∆(±2l12±∓2l34±) in the system (6.24).

The commutation of the operators l̂12± and l̂34± with H0 leads to appearance

of new variables (see Table E.1).

Note, that the amplitude of the precession of the components Lx and Ly
decreases with the increase of the crystal field (see Figs.6.4 and 6.5). It was

discussed in Section 6.2.1 that the angular momentum is partly quenched due

to the crystal field, and thus, the lengths of the vectorsM1 andM2 are reduced.

The final value of Mz is also different in all cases. This is because the value

of the IFE and its dependence on laser pulse frequency are strongly affected

by the internal interactions acting on the magnetic moment as was shown in

Section 6.1.2.

It should be noted that the dynamics obtained for our system is slightly

different to that induced in NiO by Satoh et al. in Ref. [43]. Satoh et al.

observed the oscillations of both ferromagnetic and antiferromagnetic vectors.

However, the precession of only antiferromagnetic vector is excited in our case.

The precession of the ferromagnetic vector was not invoked, because the laser

pulse propagating along the crystal field axis was applied.

To sum up, it was shown that the dynamics of the easy plane antiferromag-

net during the excitation can be fully described by a system of 15 first-order

differential equations. The mechanism of the induction of the net magnetic

moment and triggering of the precession of the antiferromagnetic vector of an

easy plane antiferromagnet was demonstrated.

The developed technique to study the magnetization dynamics induced by

the ultrafast IFE, can be applied to other materials, which are not necessary

antiferromagnetic. The equations of motion introduced in this Thesis can be

used as a link to derive a macroscopic description of the ultrafast IFE from

the microscopic one provided here.
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Chapter 7

Conclusions and Outlook

A theoretical basis for the description of the inverse Faraday effect (IFE) trig-

gered by subpicosecond laser pulses was developed in this Thesis. First, we

have shown that the classical interpretation of the IFE as the generation of an

effective magnetic field during the action of laser light cannot be applied to

describe the novel ultrafast experiments. This interpretation works for mag-

netization dynamics during the action of a stationary excitation for a time,

which is enough for a quasi-equilibrium to settle. However, the ultrafast IFE

is a different process, which acts as follows. The stimulated Raman scatter-

ing, which takes place for a time much smaller than any system relaxation

times, brings the system away from its ground magnetic state. This excites

a magnetic precession, which lasts for times much longer than the laser pulse

duration.

The expression for the time evolution of induced magnetization during

the ultrafast excitation was derived by the solution of the time-dependent

Schrödinger equation. The dependence of the induced magnetization on laser

pulse electric field, which we obtained, is different from the classical one, but

approaches it at long time scales. We showed that the final value of the induced

magnetization is determined by the laser pulse spectral width and the integral

of the pulse electric field over time in the ultrafast case.

We demonstrated that a circularly polarized laser pulse can induce mag-

netic changes in a system only if the spin-orbit coupling is present in a system.

In this case, the spin symmetry for transition probabilities is broken and the

Raman transitions to a new magnetic state are allowed. The crystal field struc-

ture plays also an important role for the IFE and can either enhance or reduce

it. However, the IFE is not possible in the presence of a crystal field alone.

The Heisenberg representation for the ultrafast inverse Faraday effect was

derived from the Schrödinger picture. Thus, an operator acting on a total an-
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gular momentum, the components of which depend on transition dipole matrix

elements and laser pulse electric field, was deduced. The purpose of this work

was to derive how circularly polarized light couples to total angular momen-

tum components individually. The momentum operator allows to separate the

motion of a magnetic vector due to the action of light from that induced by

other fields acting on a magnetic system. Furthermore, it provides the equa-

tions of motion of magnetic vector components during the excitation, which

smoothly merge the equations of motion after the action of a laser pulse.

First, these equations of motion were applied to describe the laser-induced

Larmor precession of a single spin in an external magnetic field. It was demon-

strated that the external magnetic field can strongly influence the spin dynam-

ics during the action of a laser pulse. Thus, we demonstrated that the sudden

approximation is not sufficient to describe the laser induced magnetic preces-

sions, the periods of which are even several tens times longer than the laser

pulse duration.

Finally, the equations of motion were applied to describe the dynamics of

a compensated easy plane antiferromagnet with an uniaxial crystal structure.

We obtained that the action of the ultrafast IFE in this system leads to the

induction of the net magnetic moment and excitation of an antiferromagnetic

vector precession.

We have several suggestions how the work performed in this Thesis can be

applied and extended for a further study of ultrafast laser induced phenomena.

1) We showed that the approximations of the classical theory of the IFE

derived for the stationary excitation are not applicable for the ultrafast case.

This also should be true for classical theories of other magneto-optical effects.

Thus, we suggest that the similar study should be performed for other effects,

especially for (direct) Faraday or Kerr effect, which are used for the measure-

ment of magnetization.

2) The developed method to describe the dynamics induced in magnetic

crystals by the ultrafast IFE is general and can be applied for magnetization

dynamics in real materials. Thus, it can be used either for the interpretation

of experiments which are already done or to suggest new ones.

3) We provided several examples how the selection rules, which determine

the transition probabilities, depend on the electron interactions. They demon-

strate how the analysis of the effectiveness of the IFE in an electron system

can be performed. Thus, it can be used for the comparison of the IFE strength

in various materials.

4) The dependence of the induced magnetization on the laser pulse prop-

erties, which is derived here, can be employed for the manipulation of magne-
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tization dynamics by adjusting laser pulse parameters.

5) Finally, the momentum operator can be used as a link to derive a macro-

scopic description of the ultrafast IFE.

123



Chapter 7. Conclusions and Outlook

124



Appendix A

The solution of the

time-dependent Schrödinger

equation

A.1 The solution of the time-dependent

Schrödinger equation by iterations

The time-dependent Schrödinger equation, which describes the time evolution

of a wave function of an electron system due to a perturbation V̂ , is

Ψ′(t) = (H0 + V̂ )Ψ(t). (A.1.1)

H0 is the unperturbed Hamiltonian of the system. An electronic system in the

absence of the perturbation V̂ is described by the Hamiltonian H0

H0 =
∑

α

p2
α/2 + Vint. (A.1.2)

pα is the momentum of an electron, Vint is the sum of the kinetic energy of nu-

clei, the interaction energy between electrons and nuclei and mutual Coulomb

energy of the electrons and nuclei. The interactions, which are important for

effects on the spin of the electrons, such as the spin-orbit- and Zeeman inter-

actions, must be also included to Vint. The summation is over all electrons in

the system.

In order to solve the equation, one makes an Ansatz that

Ψ(t) = U(Ψ0 +Ψ1(t) + Ψ2(t) + . . .), (A.1.3)
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Chapter A. The solution of the time-dependent Schrödinger equation

where U is the time evolution operator, which by definition fulfills the equation

iU ′ = H0 U , Ψ0 = Ψ(0) and Ψn are some time-dependent functions.

Combining the Eq. (A.1.1) and the property of the time evolution operator

U , one obtains

(H0 + V̂ )Ψ(t) = i(U(Ψ0 +Ψ1 +Ψ2 + . . .))′ (A.1.4)

= U(iΨ′
1 + iΨ′

2 + . . .) +H0 U(Ψ0 +Ψ1 +Ψ2 + . . .)

Subtraction of the term H0Ψ(t) from both sides leads to

V̂Ψ(t) = U(iΨ′
1 + iΨ′

2 + . . .), (A.1.5)

and multiplication of both sides by the inverse operator U−1 results in

U−1V̂ U(Ψ0 +Ψ1 +Ψ2 + . . .) = (iΨ′
1 + iΨ′

2 + . . .). (A.1.6)

Thus, the Eq. (A.1.1) can be solve iteratively, calculating the series of

integrals

Ψn+1 = −i
∫ t

−∞
U−1V̂ UΨn, n = 0 . . .∞. (A.1.7)

If Hamiltonian H0 does not change in time, the time evolution operator U
equals to the matrix exponent e−iH0t, and Eq. A.1.3 turns to

Ψ(t) = e−iH0t

(
Ψ0 − i

∫ t

−∞
dt′ eiH0t′ V̂ e−iH0t′Ψ0 (A.1.8)

−
∫ t

−∞
dt′ eiH0t′ V̂ e−iH0t′

∫ t′

−∞
dt′′ eiH0t′′ V̂ e−iH0t′′Ψ0 + . . .

)
.

A.2 Excitation by light

In the case of excitation by light, the perturbation is determined by the electric

field E and dipole moment of the system d: V̂ = −d ·E. The action of a laser

pulse with a frequency ω0 and an electric field E

E = nEf(t/T − r/(cT )) sin(ω0t). (A.2.1)

on an electronic system with the spatial extend much smaller than the wave-

length λ0 = c/ω0 is considered. E is the amplitude of the electric field, n is

perpendicular to the direction of propagation and the function f(t/T ) describes

the time-dependence of the amplitude of the electric field.
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A.2. Excitation by light

The electric field is related to the vector potential [130]

E = −1

c
A′. (A.2.2)

The vector potential obeys the wave equation

∆A =

(
∂

c∂t

)2

A =
1

c2
A′′ ; ∇A = 0. (A.2.3)

The spatial extent of the wave train, cT , has to be large compared to the

wavelength λ0 to ensure that A fulfills Eq. (A.2.3).

If the momentum operator in Eq. (A.1.2) is replaced by p − A/c, the

Hamiltonian acting on the wave function of the system Ψ(t) is

H0 + V̂ =
1

2

(
pα −

A

c

)2

+ Vint (A.2.4)

= H0 −
1

c
A
∑

α

pα +
1

2c2
A2

The termA2/2c2 will be shown to be not relevant for further considerations.

Thus, V̂ = −A
∑

α pα/c = −Q̂/c is substituted to the Eq. A.1.8

Ψ(t) = e−iH0t

(
Ψ0 +

i

c

∫ t

−∞
dt′ eiH0t′Q̂e−iH0t′Ψ0 (A.2.5)

+
1

c2

∫ t

−∞
dt′ eiH0t′Q̂e−iH0t′

∫ t′

−∞
dt′′ eiH0t′′Q̂e−iH0t′′Ψ0 + . . .

)
.

The second term of the expansion in the brackets describes the transitions

from the ground state having the energy εi to any possible excited states

φj having the energy εj
1, i. e. the absorption. The third term describes the

transitions from the ground state to possible intermediate states φj, and from

the intermediate states to final states φf having the energy εf . This term is

responsible for the stimulated Raman scattering. The further terms are of

higher order of the inverse speed of light 1/c, and can be ignored.

Ψ(t) = e−iH0t

(
Ψ0 +

i

c

∑

j

|φj〉
∫ t

−∞
dt′ ei(εj−εi)t

′〈φj|Q̂|Ψ0〉 (A.2.6)

+
1

c2

∑

jf

|φf〉
∫ t

−∞
dt′ei(εf−εj)t

′ 〈φf |Q̂|φj〉
∫ t′

−∞
dt′′ ei(εj−εi)t

′′〈φj|Q̂|Ψ0〉+ . . .

)
.

1An electronic system with a discrete spectrum is considered.

127



Chapter A. The solution of the time-dependent Schrödinger equation

Replacing the matrix element of the momentum operator by the dipole

operator D =
∑

α rα with the relation i
∑

α pα = [D,H0], one obtains

Ψ(t) = e−iH0t (Ψ0 +Ψ1(t) + Ψ2(t)) , (A.2.7)

Ψ1(t) =
∑

j

dijΓ
(1)
j (t)|φj〉 (A.2.8)

Ψ2(t) =
∑

jf

dijdjfΓ
(2)
jf (t)|φf〉 (A.2.9)

where dnm = 〈φm|nD|φn〉 are the dipole matrix elements of the transitions

from the states n to m, where {n,m} ∈ {i, j, f}. The functions Γ
(1)
j (t) and

Γ
(2)
jf (t) are

Γ
(1)
j (t) = i(εj − εi)

∫ t

−∞
dt′ ei(εj−εi)t

′
P (t′), (A.2.10)

Γ
(2)
jf (t) = (εf − εj)(εj − εi)

∫ t

−∞
dt′ei(εf−εj)t

′
P (t′)

∫ t′

−∞
dt′′ ei(εj−εi)t

′′
P (t′′),

(A.2.11)

where P (t) = (E/ω0)f(t/T ) cos(ω0t).

The termA2/2c2 in Hamiltonian (A.2.4) is ignored for the following reason.

If it is substituted to the integral (A.2.6), then

−i
∫ t

−∞
dt′ei(εf−εi)t

′〈φf |
1

2c2
A2|Ψ0〉 = (A.2.12)

= − i

4c2

∫ t

−∞
dt′P (t)2ei(εf−εi)t

′〈φf |1 + cos(2ω0t)|Ψ0〉.

The transition matrix element is diagonal in the electronic states and does not

give rise to any transitions.

A.3 The solutions for particular cases

The integrals entering the expression for the second order wave function

(Eqs. A.2.9 and A.2.11) are solved numerically by the Gauss integration

method. Thereby, the values of the integrals are calculated in 104 time points

and averaged over every five time point. This precision is necessary due to the

strongly oscillating factor cos(ω0t). The analytical expressions of the functions

Γ
(2)
jf (t) (Eq. A.2.9) are given below for two laser pulse shapes, which will be

used in the Thesis, in order to provide an idea about the time-dependence of

the second order wave function.
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A.3. The solutions for particular cases

A.3.1 For Gaussian-shaped laser pulses

In this subsection, the solution of Eq. (A.1.8) is derived for the case, when the

function f(t/T ), which describes the time-dependence of the amplitude of the

electric fieldE (see Eq. (A.2.1)), is a Gaussian function: f(t/T ) = e−t
2/T 2

/
√
π3.

Γ
(1)
j (t) =

iE
ω0

∫ t

−∞
dt′ei(εj−εi)t

′
cos(ω0t)e

−t2/T 2

. (A.3.1.1)

With the solution of the Fourier integral [139]

∫ s

−∞
ds′eiw±s′e−s

′2
=

√
π

2
e−

w2
±
4 erfc(

i

2
w± − s), (A.3.1.2)

and replacing s by t/T and w± by T (εf − εi ± ω0), one obtains the time-

dependence of Γ
(1)
f (t)

Γ
(1)
j (t) =

ET (εj − εi)

2πω0
×

×
[
e−

(T(ωij+ω0))
2

4 erfc

(
i

2
T (ωij + ω0)−

t

T

)
+ (A.3.1.3)

+ e−
(T(ωij−ω0))

2

4 erfc

(
i

2
T (ωij − ω0)−

t

T

)]
.

with ωij = εj−εi. The second order wave function does not have an analytical

expression

Γ
(2)
jf (t) =

2(εf − εj)(εj − εi)√
π

( ET
2πω0

)2

× (A.3.1.4)

×
∫ t/T

−∞
ds′
[
ei(εf−εj)Ts

′
cos(ω0Ts

′)e−s
′2

×
[
e−

(T(ωij+ω0))
2

4 erfc

(
i

2
T (ωij + ω0)− s′

)
+

+ e−
(T(ωij−ω0))

2

4 erfc

(
i

2
T (ωij − ω0)− s′

)]]
.
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Chapter A. The solution of the time-dependent Schrödinger equation

A.3.2 For rectangular shaped laser pulses

This time the excitation with a laser pulse with a rectangular shape is consid-

ered. Namely, f(t/T ) is defined as

If t /∈ [−T/2, T/2], then f(t/T ) = 0,

if t ∈ [−T/2, T/2], then f(t/T ) = 1. (A.3.2.1)

Γ
(1)
j =

iE(εj − εi)

ω0

∫ t

−T/2
cos (ω0t

′)eiωijt
′
dt′ (A.3.2.2)

Γ
(2)
jf =(εj − εi)(εf − εj)

( E
ω0

)2

× (A.3.2.3)

×
∫ t

−T/2
cos (ω0t

′)eiωjf t
′
dt′
∫ t′

−T/2
cos (ω0t

′′)eiωijt
′′
dt′′

Since Γ
(1)
j and Γ

(2)
jf are integrals, they can be expressed by the following func-

tions F (1,2)(t)

If t < −T/2, then Γ
(1,2)
j(f) = 0,

if t ∈ [−T/2, T/2], then Γ
(1,2)
j(f) = a(1,2)

(
F (1,2)(t)− F (1,2)(−T/2)

)
,

if t > T/2, then Γ
(1,2)
j(f) = a(1,2)F (1,2)(T/2)

a(1) =
iE(εj − εi)

ω0
(A.3.2.4)

a(2) = (εj − εi)(εf − εj)

( E
ω0

)2

The functions F (1)(t) and F (2)(t) are

F (1)(t) = − i

2

(
ei(ωij+ω0)t

ωij + ω0

+
ei(ωij−ω0)t

ωij − ω0

)
(A.3.2.5)

F (2)(t) =
1

ω2
ij − ω2

0

[
−e

iωif t

2

ωij
ωif

(A.3.2.6)

+
e−iωijT/2

4

(
ei(ωjf+ω0)t

ωjf + ω0

+
ei(ωjf−ω0)t

ωjf − ω0

)

×
(
ei(ω0−ωij)T/2(ω0 + ωij) + e−i(ω0+ωij)T/2(ω0 − ωij)

)

− 1

4

(
ωij − ω0

ωif + 2ω0

ei(ωif+2ω0)t +
ωij + ω0

ωif − 2ω0

ei(ωif−2ω0)t

)]
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After the excitation finishes, the functions Γ
(1)
j and Γ

(2)
jf are constant and have

the following values

Γ
(1)
j (T/2) = a(1)

(
sin(

i(ωij+ω0)T

2
)

ωij + ω0

+
sin(

i(ωij−ω0)T

2
)

ωij − ω0

)
(A.3.2.7)

Γ
(2)
jf (T/2) = a(2)

[
− iωij
ω2
ij − ω2

0

sin(
ωifT

2
)

ωif
+ (A.3.2.8)

i

2

(
e−i(ωij−ω0)T/2

(ωij − ω0)
+
e−i(ωij+ω0)T/2

(ωij + ω0)

)(
sin(

(ωjf+ω0)T

2
)

(ωjf + ω0)
+

sin(
(ωjf−ω0)T

2
)

(ωjf − ω0)

)

− i

4

(
1

ωij + ω0

sin(
(ωif+2ω0)T

2
)

ωif + 2ω0
+

1

ωij − ω0

sin(
(ωif−2ω0)T

2
)

ωif − 2ω0

)]
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Appendix B

Laser pulse characteristics

The electric and magnetic fields of a laser pulse

E = Ef(t/T ) sin(q0r− ω0t)n (B.1)

H = −Hf(t/T ) sin(q0r− ω0t)q0 × n,

where q0 = (ω0/c)e0, where e0 is the direction of propagation, give equal

contributions to the energy

Ep =
1

8π

∫
d3r 2

[
Ef(t/T ) sin(q0r− ω0t)

]2
= (B.2)

=
E2c

8π

∫
d2r

∫ ∞

−∞
dt f 2(t/T ).

The laser pulse fluence is the energy per square S

Efl =
dEp
dS

=
E2c

8π

∫ ∞

−∞
dt f 2(t/T ). (B.3)

The laser pulse intensity is the energy per square S and per time

I =
dEp
dSdt

=
E2c

8π
f 2(t/T ). (B.4)

The spectral density is related to the Fourier transform of electric field ampli-

tude as

S(ω) = |F [E(t)]|2 = 1

2π

∣∣∣∣E
∫ ∞

−∞
f(t/T ) cos(ω0t)e

−iωtdt

∣∣∣∣
2

. (B.5)
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B.1 Gaussian pulse

If the time dependence of the electric field is given by

f(t/T ) = e−t
2/T 2

, (B.1.1)

then the pulse fluence is

Efl =

(E2c

8π

)
T
√
π√
2
. (B.1.2)

The pulse duration Tdr is the FWHM of intensity, thus

Tdr =
√
2 ln 2T. (B.1.3)

The spectral density is

S(ω) =
E2

2π

∣∣∣∣
∫ ∞

−∞
e−t

2/T 2

cos(ω0t)e
−iωtdt

∣∣∣∣
2

=

(E2T 2

2π

)
π

4

(
e−(ω0−ω)2T 2/4 + e−(ω0+ω)2T 2/4

)2
(B.1.4)

≈
( ET√

2π

)2
π

4
e−(ω0−ω)2T 2/2

The spectral width is the FWHM of the spectral density ∆ω = 2
√
2 ln 2
T

= 4 ln 2
Tdr

.

B.2 Rectangular pulse

If the time dependence of the electric field is given by

f(t/T ) = 1 at t ∈ [−T/2, T/2], (B.2.1)

f(t/T ) = 0 at t /∈ [−T/2, T/2],

then the pulse fluence is

Efl =

(E2c

8π

)
T. (B.2.2)

The pulse duration is simply Tdr = T . The spectral density is

S(ω) =
E2

2π

∣∣∣∣∣

∫ T/2

−T/2
cos(ω0t)e

−iωtdt

∣∣∣∣∣

2

≈
( ET√

2π

)2 ∣∣∣∣
sin((ω0 − ω)T/2)

(ω0 − ω)T

∣∣∣∣
2

(B.2.3)

The spectral width is ∆ω ≈ 5.6/Tdr.
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B.3 Triangular pulse

If the time dependence of the electric field is given by

f(t/T ) = (t/T + 1)/2 at t ∈ [−T, T ], (B.3.1)

f(t/T ) = 0 at t /∈ [−T, T ],

then the pulse fluence is

Efl =

(E2c

8π

)
2T

3
. (B.3.2)

The pulse duration is Tdr = T/
√
2. The spectral density is

S(ω) =
E2

2π

∣∣∣∣
1

2

∫ T

−T
(t/T + 1) cos(ω0t)e

−iωtdt

∣∣∣∣
2

≈E2

2π
T 2

∣∣∣∣
1

i(ω0 − ω)T

(
ei(ω0−ω)T − sin((ω0 − ω)T )

(ω0 − ω)T

)∣∣∣∣
2

(B.3.3)

≈
( ET√

2π

)2
1

(ω0 − ω)2T 2

(
1− sin(2(ω0 − ω)T )

(ω0 − ω)T
+

sin2((ω0 − ω)T )

(ω0 − ω)2T 2

)
.

S(ω0) = 1. The spectral width ∆ω ≈ 3.5/T = 2.47/Tdr.
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Appendix C

Single spin

C.1 The calculation of the second order wave

function in the hydrogen atom-like sys-

tem

In order to derive the dipole matrix elements, one has first to recall the wave

functions of levels in a hydrogen atom [131]. The wave functions of the 1s

state are

Ψ1s
jjz = R1sψjjz , (C.1.1)

j = 1/2 is the total orbital momentum, jz = ±1/2 is the projection of the

momentum on the z direction, R1s = 2e−r is the radial part and ψjjz is the

spherical part.

ψ1/2,±1/2 = Y00χ±, (C.1.2)

Y00 = Yl=0,ml=0 =
√

1
4π

is the spherical harmonic function and χ± are the

spinor functions: χ+ =
(
1
0

)
, χ− =

(
0
1

)
.

The wave functions of the 2p state have the form

Ψ2p
jjz

= R2pψjjz (C.1.3)

with the radial function R2p =
1

2
√
6
re−r/2. The functions ψjjz are found by the

diagonalization of the Hamiltonian HSOC = −ζsocS · L, which can be repre-
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sented as



Y11χ+ Y11χ− Y10χ+ Y10χ− Y1−1χ+ Y1−1χ−

Y11χ+ −ζsoc
2

0 0 0 0 0

Y11χ− 0
ζsoc
2

−ζsoc√
2

0 0 0

Y10χ+ 0 −ζsoc√
2

0 0 0 0

Y10χ− 0 0 0 0 −ζsoc√
2

0

Y1−1χ+ 0 0 0 −ζsoc√
2

ζsoc
2

0

Y1−1χ− 0 0 0 0 0 −ζsoc
2




(C.1.4)

The eigenfunctions of this Hamiltonian with the energy −ζsoc/2 are

ψ3/2,3/2 = Y11χ+ (C.1.5)

ψ3/2,1/2 =

√
2

3
Y10χ+ +

√
1

3
Y11χ−

ψ3/2,−1/2 =

√
2

3
Y10χ− +

√
1

3
Y1−1χ+

ψ3/2,−3/2 = Y1−1χ−

and the eigenfunctions with the energy ζsoc are

ψ1/2,1/2 =

√
1

3
Y10χ+ −

√
2

3
Y11χ− (C.1.6)

ψ1/2,−1/2 =

√
1

3
Y10χ− −

√
2

3
Y1−1χ+.

Ylm are the spherical harmonics

Y10 =

√
3

4π

z

r
(C.1.7)

Y11 =

√
3

8π

y − ix

r

Y1−1 =

√
3

8π

y + ix

r
.

The dipole matrix elements of the transitions from the 1s to 2p state are∫
d3rΨ2p ∗

j′j′z
nDΨ1s

jjz . It is assumed, that the spin is initially in the x direction.
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atom-like system

It means that the ground state wave-function is

Ψ0 = Y00R1s ·
1√
2
(χ+ + χ−) (C.1.8)

Therefore, the dipole matrix elements of transitions from the ground state to

the excited states in the system are
∫
d3rΨ2p ∗

jjz

x+ iy√
2

Ψ0 = (C.1.9)

=

∫
d3rR2pψ

∗
jjz

x+ iy√
2
Y00R1s

1√
2
(χ+ + χ−)

The spinors, entering the integrals, obey the relations χ∗
±χ∓ = 0, χ∗

±χ± = 1.

Examining the wave functions of the 2p state (Eq. (C.1.5)), one can see that

there are three types of integrals entering (C.1.9)
∫
d3rY ∗

11R2p
x+ iy√

2
Y00R1s = (C.1.10)

=

∫
d3r

1√
2

1

2
√
6
re−r/2

√
3

8π

y + ix

r
(x+ iy)

√
1

4π
2e−r =

= −i2
15/2

35
= d0

∫
d3rY ∗

10R2p
x+ iy√

2
Y00R1s ∝

∫
d3r z(x+ iy) = 0 (C.1.11)

∫
d3rY ∗

1−1R2p
x+ iy√

2
Y00R1s ∝

∫
d3r(y − ix)(x+ iy) =

= −i
∫
d3r(x2 − y2) = 0. (C.1.12)

Therefore, there are only three nonzero dipole matrix elements of the transi-

tions from the ground state to the excited states induced by circularly polarized

laser light:

d01 =

∫
d3rΨ2p ∗

3/2,3/2

x+ iy√
2

Ψ0 = (C.1.13)

=
1√
2

∫
d3rΨ2p ∗

3/2,3/2

x+ iy√
2

Ψ1s
1/2,1/2 =

1√
2
d0;

the other to {2p, j = 3/2, jz = 1/2}:

d02 =

∫
d3rΨ2p ∗

3/2,1/2

x+ iy√
2

Ψ0 = (C.1.14)

=
1√
2

∫
d3rΨ2p ∗

3/2,1/2

x+ iy√
2

Ψ1s
1/2,−1/2 =

1√
2

√
1

3
d0;
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Chapter C. Single spin

and to {2p, j = 1/2, jz = 1/2}:

d03 =

∫
d3rΨ2p ∗

1/2,1/2

x+ iy√
2

Ψ0 = (C.1.15)

=
1√
2

∫
d3rΨ2p ∗

1/2,1/2

x+ iy√
2

Ψ1s
1/2,−1/2 = − 1√

2

√
2

3
d0.

Likewise, there are three allowed transitions from the exited states back to the

1s state:

1) to the spin-up state from the {2p, j = 3/2, jz = 3/2} state with the

dipole matrix element d10 = d∗0,

2) to the spin-down state from {2p, j = 3/2, jz = 1/2} with d20 =
√

1/3 ·d∗0
and

3) to the spin-down state from {2p, j = 1/2, jz = 1/2} with d30 = −
√

2/3 ·
d∗0.

The time-dependent parts Γ(2)(t), which enter Eq. (3.9), depend on the

energies of initial, intermediate and final states. Since it is assumed that the

SOC in the system is considerable and the 2p state is split, two functions

Γ(2)(t) can be distinguished: the one for the transitions to the excited states

with j = 3/2, designated as Γ
(2)
3/2(t), and for j = 1/2, designated as Γ

(2)
1/2(t).

Applying Eq. (3.9) to the system, one obtains the second order wave-function,

which describes the stimulated Raman scattering process

Ψ2(t) = d01d10Γ
(2)
3/2(t)Ψ

1s
1/2 + d02d20Γ

(2)
3/2(t)Ψ

1s
−1/2 +

+d03d30Γ
(2)
1/2(t)Ψ

1s
−1/2 = (C.1.16)

=
1√
2

(
|d0|2Γ(2)

3/2(t)χ+ +
1

3
|d0|2Γ(2)

3/2(t)χ−+

+
2

3
|d0|2Γ(2)

1/2(t)χ−

)
Y00R1s =

=
|d0|2√

2

(
Γ
(2)
3/2(t)

1
3
Γ
(2)
3/2(t) +

2
3
Γ
(2)
1/2(t)

)
Y00R1s.
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C.2. The effect of linear polarized light

C.2 The effect of linear polarized light

If the light was linear, there would be no spin-rotation in the system. For

example, for linear light in the x direction, the integrals entering (C.1.9) are
∫
d3rY ∗

11R2pxY00R1s = (C.2.1)

=

∫
d3r

1√
6

√
1

4π
re−3r/2

√
3

8π

y + ix

r
x = idx

∫
d3rY ∗

10R2pxY00R1s ∝
∫
d3r zx = 0

∫
d3rY ∗

1−1R2pxY00R1s =

=

∫
d3r

1√
6

√
1

4π
re−3r/2

√
3

8π

y − ix

r
x = −idx.

And the second order wave function in the case of linear light would be

Ψln
2 (t) =

|dx|2√
2

(
Γ
(2)
3/2(t) +

1
3
Γ
(2)
3/2(t)− 2

3
Γ
(2)
1/2(t)

Γ
(2)
3/2(t) +

1
3
Γ
(2)
3/2(t)− 2

3
Γ
(2)
1/2(t)

)
Y00R1s =

= |dx|2
(
4

3
Γ
(2)
3/2(t)−

2

3
Γ
(2)
1/2(t)

)
Y00R1s

( 1√
2
1√
2

)
. (C.2.2)

The spinor of the function would always correspond to the alignment of the

spin in the x direction and no rotation could be observed. It can be easily

reproduced for linear light in any direction.

C.3 Spin-orbit coupling and an external field

C.3.1 Spin-orbit coupling and Zeeman interaction

In this Section, the effect of spin orbit coupling determined by the term ζsocL·S
together with an external magnetic field determined by the term 1

2
B · (2S+L)

on the hydrogen atom-like system is studied. Magnetic filed pointing in the

−x direction is considered. Thus, the Hamiltonian is

H0 = −B
2
(2Ŝx + L̂x)− ζsocL · S (C.3.1.1)

The effect of H0 on the s state is trivial. SOC does not affect s state, and

the state is split only due to the Zeeman interaction by energy ∆ε = B into
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Chapter C. Single spin

two levels with wave functions

Ψ1s
x± = R1sY00(χ+ ± χ−)/

√
2 with energy ε0x± = ε1s ±B/2. (C.3.1.2)

On has to diagonalize the following Hamiltonian containing both SOC and

Zeeman terms in order to obtain the splitting of 2p-state:



Y11χ+ Y11χ− Y10χ+ Y10χ− Y1−1χ+ Y1−1χ−

Y11χ+ −ζsoc
2

−B
2

− B

2
√
2

0 0 0

Y11χ− −B
2

ζsoc
2

−ζsoc√
2

− B

2
√
2

0 0

Y10χ+ − B

2
√
2

−ζsoc√
2

0 −B
2

− B

2
√
2

0

Y10χ− 0 − B

2
√
2

−B
2

0 −ζsoc√
2

− B

2
√
2

Y1−1χ+ 0 0 − B

2
√
2

−ζsoc√
2

ζsoc
2

−B
2

Y1−1χ− 0 0 0 − B

2
√
2

−B
2

−ζsoc
2




.

(C.3.1.3)

It has six eigenvectors and eigenenergies. The eigenenergies are εk± = ε2p,k± +

Ek±, k+ = 1, 2, 3, k− = 4, 5, 6. Ek+ are the solutions of the equation

E3
k+

+
B

2
E2
k+

−
(
3ζ2soc
4

+
Bζsoc
2

+
B2

2

)
Ek+ +

(
−ζ

3
soc

4
+
ζsocB

2

4
− 3ζ2socB

8

)
= 0,

(C.3.1.4)

and Ek− are the solutions of the equation

E3
k− − B

2
E2
k− −

(
3ζ2soc
4

− Bζsoc
2

+
B2

2

)
Ek− +

(
−ζ

3
soc

4
+
ζsocB

2

4
+

3ζ2socB

8

)
= 0,

(C.3.1.5)

Thus, 2p state is split energetically into six levels with wave functions

Ψ2p
k±

= R2p

[
αk±
(
Y11χ+ ± Y1−1χ−

)
(C.3.1.6)

+ βk±
(
Y11χ− ± Y1−1χ+

)
+ γk±

(
Y10χ+ ± Y10χ−

)]
,

where (if ζsoc 6= 0 and B 6= 0)

αk± =
B
(
5
8
ζsoc − 3

4
Ek±

)

Nk±

(
Ek± + 1

2
ζsoc
) , βk± =

Ek± + B
4
− ζsoc

2

Nk±

, γk± =
Ek± − 3

2
ζsoc − B

2√
2Nk±

,

(C.3.1.7)
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C.3. Spin-orbit coupling and an external field

Nk± is the normalisation factor, which provides |αk±|2+ |βk±|2+ |γk±|2 = 1. If

ζsoc = 0, B 6= 0, then

α1,6 =
1

2
√
2
, β1,6 =

1

2
√
2
, γ1,6 = −1

2
, εk1,6 = ε2p

α2,5 =
1

2
, β2,5 = −1

2
, γ2,5 = 0, εk2,5 = ε2p ±B/2 (C.3.1.8)

α3,4 =
1

2
√
2
, β3,4 =

1

2
√
2
, γ3,4 =

1

2
, εk3,4 = ε2p ∓B

If spin is initially aligned along the magnetic field, e. g. in the +x direction,

then the initial wave function is Ψ1s
0 = R1sY00

(
1/

√
2

1/
√
2

)
. And the second order

wave function of this system excited by left-circularly polarized light is (see

Eq. (A.2.9))

Ψ2(t) =

∫ t

−∞
dtU

(∑
k± |αk±|2Gk±(t)∑
k± |βk±|2Gk±(t)

)
, (C.3.1.9)

=
1

2

∫ t

−∞
dt
∑

k±
Gk±(t)

[(
|αk±|2 + |βk±|2

)(1
1

)
e−iHt/2

+
(
|αk±|2 − |βk±|2

)( 1

−1

)
eiHt/2

]
,

The functions Gk± depend on the k±-th energy of the excited state, and U =

eiωŜxt =

(
cos(ωt

2
) −i sin(ωt

2
)

−i sin(ωt
2
) cos(ωt

2
)

)
is the time evolution operator, which obeys

the condition H0 U = iU ′. If ζsoc 6= 0, then |αk±|2 6= |βk±|2, and Ψ2(t) is not

proportional to Ψ1s
0 , thus, the spin is rotated. But if ζsoc = 0, then |αk±|2 =

|βk±|2 for any k±, and Ψ2(t) ∝ Ψ0. Thus, the spin is rotated after Raman

transitions only if ζsoc 6= 0.

C.3.2 Spin-orbit coupling and crystal field

If there are negative charges situated on the y-axis and positive charges situated

on the x-axis, then the Hamiltonian acting on the system can be written as

H0 = −∆(L̂2
y − L̂2

x)− ζsocL · S, ∆ > 0. (C.3.2.1)

This Hamiltonian does not affect the wave functions and energy of the s state,

but leads to the splitting of the p state. Using that

L̂2
x =




1/2 0 1/2

0 1 0

1/2 0 1/2



 , L̂2
y =




1/2 0 −1/2

0 1 0

−1/2 0 1/2



 , (C.3.2.2)
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Chapter C. Single spin

the Hamiltonian acting on the p state can be expressed in the matrix form as




Y11χ+ Y11χ− Y10χ+ Y10χ− Y1−1χ+ Y1−1χ−
Y11χ+ −ζsoc/2 0 0 0 ∆ 0

Y11χ− 0 ζsoc/2 −ζsoc/
√
2 0 0 ∆

Y10χ+ 0 −ζsoc/
√
2 0 0 0 0

Y10χ− 0 0 0 0 −ζsoc/
√
2 0

Y1−1χ+ ∆ 0 0 −ζsoc/
√
2 ζsoc/2 0

Y1−1χ− 0 ∆ 0 0 0 −ζsoc/2




.

(C.3.2.3)

This Hamiltonian obtains three eigen-energies ǫ2p,k = ǫ2p+Ek, k = 1, 2, 3, Ek
are the solutions of the equation

E3
k − Ek(∆

2 + 3ζ2soc/4)− ζ3soc/4 = 0 (C.3.2.4)

Each eigenvalue corresponds to two eigenvectors

ψ2p
k1 =




∆
Ek+ζsoc/2

0

0

− ζsoc√
2Ek

1

0




and ψ2p
k2 =




0

1

− ζsoc√
2Ek

0

0
∆

Ek+ζsoc/2




(C.3.2.5)

Thus, the 2p state is split energetically into three levels, which are twice de-

generate, with the wave functions

ψ2p
k1 = αkY11χ+ + βkY10χ− + γkY1−1χ+ (C.3.2.6)

ψ2p
k2 = αkY1−1χ− + βkY10χ+ + γkY11χ−

αk± = ∆
(Ek+ζsoc/2)Nk±

, βk± = − ζsoc√
2EkNk±

, γk± = 1
Nk±

, Nk± = |ψ2p
k1| = |ψ2p

k2|.
Eq. (C.3.2.6) is correct only if ζsoc 6= 0. If ζsoc = 0, then the wave functions

are

ψ2p
1(1,2) = Y10χ±, with the energy ǫ2p,k = ǫ2p

ψ2p
2(1,2) =

Y11χ± + Y1−1χ±√
2

, with the energy ǫ2p,k = ǫ2p +∆ (C.3.2.7)

ψ2p
3(1,2) =

Y11χ± − Y1−1χ±√
2

, with the energy ǫ2p,k = ǫ2p −∆

144



C.3. Spin-orbit coupling and an external field

If the system was initially in the state with the wave function Ψ0 ∝ ( qr ),

|q|2 + |r|2 = 1, and was excited by a left-circular polarized light, then by the

selection rules

Ψ2(t) =

(
q
∑

k |αk|2Γk(t)
r
∑

k |γk|2Γk(t)

)
6∝ Ψ1s

0 , if ζsoc 6= 0

Ψ2(t) =

(
q (Γ2(t)

2
+ Γ3(t)

2
)

r (Γ2(t)
2

+ Γ3(t)
2

)

)
∝ Ψ1s

0 , if ζsoc = 0, (C.3.2.8)

where the Γk = Γ
(2)
1s,2pk depend on the k-th energy of the excited state (see

Eq. (A.2.11)). Since it depends on the coefficient |αk|2, which does not depend

on the sign of ∆, the effect is independent on the sign of ∆ in this case. The

spin-flip probability is

ws-f(t) =
|〈Ψ2(t)| r

−q 〉|2
|Ψ0 +Ψ2(t)|2

= |qr|2 |
∑

k(|αk|2 − |γk|2)Γk|2
|Ψ0 +Ψ2(t)|2

. (C.3.2.9)

If there are positive (negative) charges on both x and y axis, then the

Hamiltonian acting on the system can be written as

H0 = −∆((1 − L̂2
x) + (1− L̂2

y))− ζsocL · S, (C.3.2.10)

where ∆ > 0 for the positive charges, ∆ < 0 for the negative charges. The

Hamiltonian acting on the p state in the matrix form is



Y11χ+ Y11χ− Y10χ+ Y10χ− Y1−1χ+ Y1−1χ−

Y11χ+ −ζsoc
2

−∆ 0 0 0 0 0

Y11χ− 0
ζsoc
2

−∆
ζsoc√
2

0 0 0

Y10χ+ 0 −ζsoc√
2

0 0 0 0

Y10χ− 0 0 0 0 −ζsoc√
2

0

Y1−1χ+ 0 0 0 −ζsoc√
2

ζsoc
2

−∆ 0

Y1−1χ− 0 0 0 0 0 −ζsoc
2

−∆




.

(C.3.2.11)

The 2p state is split energetically into three levels, which are twice degenerate.

The wave functions are

ψ2p
11 = Y11χ+, ψ12 = Y1−1χ−

ψ2p
21,31 = α2,3Y11χ− + β2,3Y10χ+ (C.3.2.12)

ψ2p
22,32 = α2,3Y1−1χ+ + β2,3Y10χ−,
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Chapter C. Single spin

the corresponding energies are ǫ2p,k = ǫ2p + Ek, where

E1 = −ζsoc/2−∆, E2,3 =
ζsoc − 2∆±

√
4∆2 − 4∆ζsoc + 9ζ2soc

4
(C.3.2.13)

α2,3 =

√
2E2,3√

2E2
2,3 + ζ2soc

, β2,3 = − ζsoc√
2E2

2,3 + ζ2soc

, ζsoc 6= 0.

It should hold that |α2|2 + |α3|2 = 1, and |β2|2 + |β3|2 = 1, At the same time,

the normalization of the wave function requires |α2,3|2 + |β2,3|2 = 1. Thus,

|β2| = |α3|, |β3| = |α2|.
If ζsoc = 0, the 2p state is split energetically into two levels, one of which

is twice degenerate, and another fourfold degenerate

ψ2p
11,12 = Y10χ±, with the energy ǫ2p,1 = ǫ2p (C.3.2.14)

ψ2p
21,22 = Y11χ±, ψ2p

23,24 = Y1−1χ±, with the energy ǫ2p,1 = ǫ2p −∆

If the system was initially in the state with the wave function Ψ0 ∝ ( qr ),

|q|2 + |r|2 = 1, and was excited by a left-circular polarized light, then by the

selection rules

Ψ2(t) =

(
q Γ1(t)

r (|α2|2Γ2(t) + |α3|2Γ3(t))

)
6∝ Ψ1s

0 , if ζsoc 6= 0

Ψ2(t) =

(
q Γ2(t)

r Γ2(t)

)
∝ Ψ1s

0 , if ζsoc = 0, (C.3.2.15)

where the Γk depend on the k-th energy of the excited state. Thus, the spin of

1s state is reoriented only if ζsoc 6= 0 in both cases. The spin-flip probability is

ws-f(t) =
|〈Ψ2(t)| r

−q 〉|2
|Ψ0 +Ψ2(t)|2

= |qr|2 |Γ1 − |α2|2Γ2 − |α3|2Γ3|2
|Ψ0 +Ψ2(t)|2

(C.3.2.16)
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Appendix D

Momentum operator

The operator HJ , which should describe the action of circularly polarized light

due to the ultrafast IFE on the ground state manifold, will be derived. It should

yield the time dependence of magnetic states via a Schrödinger equation.

iΨ′
g = [H0 +HJ ]Ψg, (D.1)

where H0 includes all internal and external fields acting on the ground state

apart from the light.

It was shown in Chapter 2 that the wave function of the ground state

manifold of a system perturbed by a laser pulse via the stimulated Raman

scattering process is Ψg(t) = U(t)Ψ02(t), where Ψ02(t) =
(
Ψ0 + Ψ2(t)

)
/|Ψ0 +

Ψ2(t)|. U is the time evolution operator, which obeys the equation H0 U = iU ′.
Ψ0 is the wave function of the initial state: Ψg(0) = Ψ0, Ψ2(t) is the second

order wave function (see Eq. 2.37).

The initial wave function Ψ0 of the system is a spinor, which can be ex-

pressed as

Ψ0 =




P01

P02
...

P0n


 , (D.2)

where n = 2J + 1, J is total momentum and P0k is the k-th projection of J

on the z axis,
∑

k |P0k|2 = 1.

The action of a circularly polarized laser pulse propagating in the z direc-

tion is considered. k-th spinor element of the second order wave function Ψ02

is proportional to the dipole moments 〈e|x ± iy|Ψ0k〉, where e is an excited

state (see Chapter 3). Thus, the k-th element of Ψ02 is proportional to P0k
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Chapter D. Momentum operator

multiplied by some time-dependent factor Ak(t)e
iφk(t), and

Ψg = U




1

N (t)




A1(t)e
iφ1(t)P01
...

Ak(t)e
iφk(t)P0k
...






=




P1(t)
...

Pk(t)
...



, (D.3)

P0k = Pk(0), Ak(0)e
iφ(0) = 1, N 2 =

∑
k |P0k|2|Ak|2.

D.1 The operator in case U = 1

The operator is derived first for the case, that there is no field except light

which acts on the magnetic momentum of the ground state: U = 1, HJΨg =

iΨ′
g and Ψg = Ψ02. The operatorH0

J is defined by the equation H0
JΨ02 = iΨ′

02.

If U = 1, HJ = H0
J

If the magnetic momentum of a system is parallel to the laser pulse propa-

gation direction, then it is not rotated (see Chapter 3). Thus, if Ψ0 =




0
...
Pk

...



,

there |Pk| = 1, then the momentum operator acts only on the i-th component

of the wave function, so that the other magnetic components do not become

populated: H0
JΨg = 1

N (t)




0
...

Ak(t)e
iφk(t)

...


. The function Ψg is normalized to

unity, |Ψg| = 1, and Ψg = eiφk(t)Ψ0. Thus, the diagonal elements of the opera-

tor HJ are (H0
J)kk = −φ′

k(t).

The other components of the operator H0
J are found first for the simplest

case, when J = S = 1/2. The initial wave function corresponding to spin

aligned in an arbitrary direction is Ψ0 =
(
P01
P02

)
, |P01|2 + |P02|2 = 1. The

operator HJ is a hermitian 2× 2 matrix

H0
J =

(
−φ′

1(t) c(t)

c∗(t) −φ′
2(t).

)
(D.1.1)

The action of this operator on Ψg results in

H0
JΨg =

(
−φ′

1P1 + cP2

c∗P1 − φ′
2P2

)
(D.1.2)

148



D.1. The operator in case U = 1

And on the other hand, H0
JΨg = iΨ′

g. The differentiation of Ψg leads to

iΨ′
g =

(
i
(
A1

N
)′
eiφ1P01 − φ′

1e
iφ1 A1

N P01

i
(
A2

N
)′
eiφkP02 − φ′

2e
iφ2 A2

N P02

)
=


i
((

A1

N
)′
/A1

N

)
P1 − φ′

1P1

i
((

A2

N
)′
/A2

N

)
P2 − φ′

2P2




=


i
(
A′

1

A1
− (N 2)′

2N 2

)
P1 − φ′

1P1

i
(
A′

2

A2
− (N 2)′

2N 2

)
P2 − φ′

2P2


 =


i
(
A′

1

A1
− |P1|2A

′
1

A1
− |P2|2A

′
2

A2

)
P1 − φ′

1P1

i
(
A′

2

A2
− |P1|2A

′
1

A1
− |P2|2A

′
2

A2

)
P2 − φ′

2P2




=


i
(
A′

1

A1
− A′

2

A2

)
P1P

∗
2P2 − φ′

1P1

i
(
A′

2

A2
− A′

1

A1

)
P2P

∗
1P1 − φ′

2P2


 (D.1.3)

Thus, the operator in the case J = 1/2 is

H0
J =


 −φ′

1(t) iP1P
∗
2

(
A′

1

A1
− A′

2

A2

)

iP ∗
1P2

(
A′

2

A2
− A′

1

A1

)
−φ′

2(t)


 . (D.1.4)

The operator can be conveniently expressed via the operators

N̂12+ =

(
0 1

1 0

)
= 2Ŝx, N̂12− =

(
0 −i
i 0

)
= 2Ŝy (D.1.5)

N̂1 =

(
1 0

0 0

)
=

2

3
Ŝ2 + Ŝz, N̂2 =

(
0 0

0 1

)
=

2

3
Ŝ2 − Ŝz

It can be noticed that

P1P
∗
2 = 〈Pg|

N̂12+ − iN̂12−
2

|Pg〉. (D.1.6)

Thus, the operator can be expressed as

H0
J = −

∑

k

γkN̂k +
1

2

∑

k,l

(νk − νl)
(
Nkl−N̂kl+ −Nkl+N̂kl−

)
, (D.1.7)

where {k, l} ∈ {1, 2}, γk = φ′
k, νk =

A′
k

Ak
.

It can be checked that the general form of the operator is

HJ =




. . .

−γk · · · iPkP
∗
l (νk − νl) · · ·

...
. . .

iP ∗
kPl (νl − νk)

...



, (D.1.8)
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Chapter D. Momentum operator

finding the k-th element of a spinor, which is the result of the action of HJ on

Ψg,

(H0
JΨg)k = −φ′

kPk + i
∑

l,l 6=k
Pl

[
PkP

∗
l

(
A′
k

Ak
− A′

l

Al

)]

= −φ′
kPk + iPk

[
A′
k

Ak

∑

l,l 6=k
|Pl|2 −

∑

l

|Pl|2
A′
l

Al

]

= −φ′
kPk + iPk

[
A′
k

Ak
(1− |Pk|2)−

∑

l,l 6=k
|Pl|2

A′
l

Al

]

= −φ′
kPk + iPk

[
A′
k

Ak
−
∑

l

|Pl|2
A′
l

Al

]
(D.1.9)

= −φ′
kPk + iPk

[
A′
k

Ak
−
∑

l

|P0l|2AlA′
l

N 2

]

= −φ′
kPk + iPk

[
A′
k

Ak
− (N 2)′

2N 2

]

= −φ′
kPk + iPk

(
Ak
N

)′
/

(
Ak
N

)

=

(
−φ′

k + i
|Pk|′
|Pk|

)
Pk = iP ′

k.

Thus, H0
JΨg = iΨ′

g.

The operator HJ can be expressed via the operators N̂kl±, which can be

represented by matrices with the elements

(Nkl+)kl = (Nkl+)lk = 1, l ≥ k

(Nkl−)kl = −i, (Nkl−)lk = i, l > k (D.1.10)

N̂k = N̂kk+, (Nkk+)kk = 1

(Nkl±)mn = 0, if m 6= k, m 6= l, n 6= k, n 6= l or l < k.

Thereby, the expression (D.1.7) is general for any n = 2J + 1

H0
J = −

n∑

k

γkN̂k +
1

2

n∑

k,l

(νk − νl)
(
Nkl−N̂kl+ −Nkl+N̂kl−

)
. (D.1.11)
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D.2 The general form of the operator

The wave function of the ground state in the case of U 6= 1 can be expressed

as

Ψg = U




1

N (t)




A1(t)e
iφ1(t)P01
...

Ak(t)e
iφk(t)P0k
...






=

1

N (t)




...

Bk(t)P0k
...


 =




P1(t)
...

Pk(t)
...



,

(D.2.1)

where




...

Bk(t)
...


 = U




...

Ak(t)e
iφk

...


 = UA. Substituting Ψg instead of Ψ02 into

the relation H0
JΨ02 = iΨ′

02 with H0
J being

H0
J = −

∑
Im

(
B′
k

Bk

)
N̂k +

1

2

∑
Re

(
B′
k

Bk
− B′

l

Bl

)(
Nkl−N̂kl+ −Nkl+N̂kl−

)
.

(D.2.2)

Using that




...

B′
k(t)
...


 = U ′




...

Ak(t)e
iφk

...


+ U




...

(Ak(t)e
iφk)′

...


 = −iH0

Ψg

N + UA′,

H0
J can be separated into two parts H0

J = H0 +HJ .

HJ =−
∑

Im

(
[UA′]k
[UA]k

)
N̂k

+
1

2

∑
Re

(
[UA′]k
[UA]k

− [UA′]l
[UA]l

)(
Nkl−N̂kl+ −Nkl+N̂kl−

)

H0 =
∑

Im

(
[iH0Ψg]k

Pk

)
N̂k

− 1

2

∑
Re

(
i[H0Ψg]k

Pk
− i[H0Ψg]l

Pl

)(
Nkl−N̂kl+ −Nkl+N̂kl−

)
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Chapter D. Momentum operator

The k-th element of H0Ψg is

[H0Ψg]k = + Im(i[H0Ψg]k)− iRe (i[H0Ψg]k)
∑

l 6=k
|Pl|2+

Pk
∑

l 6=k
|Pl|2Re

(
i[H0Ψg]l

Pl

)

= Re([H0Ψg]k) + i Im ([H0Ψg]k)− i
∑

l

Im (P ∗
l [H0Ψg]l)

= [H0Ψg]k − i Im
(
[Ψ∗

gH0Ψg]l
)
= [H0Ψg]k,

therefore H0 = H0. At the same time HgΨg = [H0 +HJ ]Ψg = iΨ′
g, where Hg

is the Hamiltonian acting on the ground state. Thus, the general form of HJ

in the case of any U is

HJ = −
n∑

k

γkN̂k +
1

2

n∑

k,l

(νk − νl)
(
Nkl−N̂kl+ −Nkl+N̂kl−

)
(D.2.3)

νk = Re (Yk) , γk = Im (Yk) , Yk = [UA′]k/[UA]k. (D.2.4)

D.3 Commutator with the momentum opera-

tor

In this section, it is shown that the equations of motion of the expectation

values of N̂kl± operators are given by

N ′
kl± = (F + νk + νl)Nkl± ± (γk − γl)Nkl∓, (D.3.1)

where F = −2
∑

i νiNi. For example, if J = 3/2, then

N̂12+ =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 , N̂12− =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


 , (D.3.2)

F = −2 (ν1N1 + ν2N2 + ν3N3 + ν4N4)

= −2
(
ν1|P1|2 + ν2|P2|2 + ν3|P3|2 + ν4|P4|2

)

The equations of motion for their expectation values are

N ′
12+ = (F + ν1 + ν2)N12+ + (γ1 − γ2)N12− (D.3.3)

N ′
12− = (F + ν1 + ν2)N12− − (γ1 − γ2)N12+
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D.3. Commutator with the momentum operator

Jx,y,z can be expressed via N̂kl± operators

Ĵx =

√
3

2
N̂12+ + N̂23+ +

√
3

2
N̂34+

Ĵy =

√
3

2
N̂12− + N̂23− +

√
3

2
N̂34− (D.3.4)

Ĵz =
3

2
N̂1 +

1

2
N̂2 −

1

2
N̂3 −

3

2
N̂4

The equations of motion of the expectation values of the operator N̂kl± in

the Heisenberg picture is given by

N ′
kl± = −i〈[N̂kl±,HJ ]〉 (D.3.5)

The commutators of the N̂kl± operators are found with diagonal, Hd, and non-

diagonal part, Hn, of the operator HJ = Ĥd+ Ĥn separately. The elements of

N̂kl±, Ĥd,n, N̂kl±Ĥd,n, Ĥd,nN̂kl± and [N̂kl±, Ĥd,n] are designated as nkl, h
(d,n)
kl ,

p
(d,n)
kl , q

(d,n)
kl and l

(d,n)
kl correspondingly.

1) Commutation of N̂kl± with the diagonal part Ĥd (h
(d)
aa 6= 0, h

(d)
ab = 0, if

a 6= b)

p
(d)
ab =

∑

c

nach
(d)
cb = nabh

(d)
bb ,

q
(d)
ab =

∑

c

h(d)ac ncb = nabh
(d)
aa , (D.3.6)

l
(d)
ab = p

(d)
ab − q

(d)
ab = nabh

(d)
bb − nabh

(d)
aa = nab(h

(d)
bb − h(d)aa ),

l
(d)
kl = nkl(γl − γk), l

(d)
lk = −nlk(γl − γk), l

(d)
ab = 0, if {a, b} /∈ {k, l}

[N̂kl±, Ĥd] = ±i(γk − γl)N̂kl∓

2) Commutation of N̂kl± with the non-diagonal part Ĥn (h
(n)
aa = 0, h

(n)
ab 6= 0,

if a 6= b)

p
(n)
ka = nklh

(n)
la , p

(n)
la = nlkh

(n)
ka , p

(n)
ba = 0, if b 6= k, l

q
(n)
ak = nlkh

(n)
al , q

(n)
al = nklh

(n)
ak , q

(n)
ab = 0, if b 6= k, l. (D.3.7)

The expectation value of [N̂kl±, Ĥn] equals to
∑

ab P
∗
aPbl

(n)
ab , Pi are defined in
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Chapter D. Momentum operator

Eq. (D.3),

∑

ab

P ∗
aPbl

(n)
ab =

∑

a

P ∗
kPanklh

(n)
la + P ∗

l Panlkh
(n)
ka − P ∗

aPlnklh
(n)
ak − P ∗

aPknlkh
(n)
al

= i
∑

a

P ∗
kPl|Pa|2(νl − νa)nkl + P ∗

l Pk|Pa|2(νk − νa)nlk −

P ∗
kPl(νa − νk)nkl − P ∗

l Pk|Pa|2(νa − νl)nlk (D.3.8)

= i
∑

a

[
−2|Pa|2νa + |Pa|2(νk + νl)

]
[P ∗
kPlnkl + P ∗

l Pknlk]

= i

[
−2

(
∑

a

|Pa|2νa
)

+ (νk + νl)

]
Nkl±.

The relation
∑

a |Pa|2 = 1, which is due to the normalization of the wave

function, is used.
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Appendix E

Dynamics of an easy plane

antiferromagnet

E.1 Ground and excited states

A system of two antiferromagnetically coupled sub-lattices is considered in the

framework of the Weiss mean field theory. The exchange interaction Hex1(2)

acting on each atom belonging to sub-lattice 1(2) can be written according to

the theory as (see Section 6.2.1)

Hex1 = Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1) (E.1.1)

Hex2 = Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2),

The total magnetic momentum J of each atom in the ground state is equal

to 3/2. An uniaxial crystal field in the z-direction is acting on the system

additionally to the exchange interaction. The spin-orbit coupling is assumed

to be much larger than the crystal field and exchange interaction, thus, the

Hamiltonian can be expressed via the total momentum operators. The total

Hamiltonian acting on each atom belonging to sub-lattice 1 or 2 is

H0 = Hex1 +Hex2 +∆

(
3Ĵ2

z1 −
15

4

)
+∆

(
3Ĵ2

z2 −
15

4

)
. (E.1.2)

∆ is the value of the crystal field. ∆ > 0 is taken, thus, the xy plane is the

easy plane. The initial direction of the magnetic vectors of the sub-lattices is

defined as the x axis.

The energy and the wave function of the energetically lowest state of the

sub-lattices 1 are found by diagonalization of the Hamiltonian, which includes
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Chapter E. Dynamics of an easy plane antiferromagnet

the crystal field interaction and the effective field in the x direction caused by

the exchange interaction with the system 2

H0(eff) = ∆

(
3Ĵ2

z1 −
15

4

)
+ (JexJx2)Ĵx1, (E.1.3)

Jx2 is the expectation value of the magnetic momentum in the x direction of

the system 2. The ground state of the system is the state with the lowest

energy, i. e. the state, where the lengths of the magnetic vectors |Jx1| and
|Jx2| are the largest, but the vectors are antiparallel Jx1 = −Jx2. It can take

values of ±3
2
and ±1

2
in the absence of the crystal field. However, the magnetic

momentum is partly quenched due to the crystal field. The actual value of Jx2
depends also on the magnetic momentum of the system 1, therefore, it is not

known.

An iteration procedure is applied to find the correct expectation values of

the quenched magnetic momenta. We would like to determine the state with

the largest and opposite values of Jx1 and Jx2. Therefore, the largest negative

eigenvalue of Jx2, namely −3/2, in the absence of the crystal field is taken

for the first step. Then, the effective field in the x direction is defined as

J0 = −3
2
Jex, and the eigenfunctions of the Hamiltonian are determined

H0(eff) = ∆

(
3J2

z1 −
15

4

)
+ J0Ĵx1

=




3∆
√
3
2
J0 0 0√

3
2
J0 −3∆ J0 0

0 J0 −3∆
√
3
2
J0

0 0
√
3
2
J0 3∆


 . (E.1.4)

It has four possible eigenvectors and eigenvalues:

E
(1)
s1,s2 = −J0

2
±
√

J 2
0 + 3∆J0 + 9∆2, (E.1.5)

E
(1)
s3,s4 =

J0

2
±
√
J 2

0 − 3∆J0 + 9∆2

Ψ
(1)
s1,s2 =




1
Es1,s2−3∆√

3
2
J0

−Es1,s2−3∆√
3

2
J0

−1



, Ψ

(1)
s3,s4 =




1
Es3,s4−3∆√

3
2
J0

Es3,s4−3∆√
3

2
J0

1




(E.1.6)

The expectation values of the x projection of the magnetic momentum

of the system 1 are calculated with the resulting wave-functions Jx1 =
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E.1. Ground and excited states

〈Ψ(1)
si |Ĵx|Ψ(1)

si 〉 (i stays for 1, 2, 3 or 4). The largest positive value of Jx1 is

substituted to J0 = Jx1Jex and the eigenfunctions of the system 2 with the

Hamiltonian

H0(eff) = ∆

(
3Ĵ2

z2 −
15

4

)
+ J0Ĵx2 (E.1.7)

are calculated.

The new values of Jx2 are found with the new eigenfunctions and the proce-

dure with the system 1 is repeated taking J0 = Jx2Jex, where Jx2 is the largest

negative value. Jx1 and Jx2 converge to certain values, which differ only by a

sign, after about 20 loops. According to Eq. (E.1.6) the wave functions, de-

scribing the magnetic vectors aligned in the x direction, having equal length,

but anti-parallel aligned, have the form

Ψ
(1)
0 =




a

b

b

a


 , Ψ

(2)
0 =




a

−b
b

−a


 , Im(a) = Im(b) = 0, a > 0, b > 0. (E.1.8)

The corresponding expectation values of the J projections are

Jx1 =
√
3ab± 2b2 +

√
3ab, Jx2 = −

√
3ab− 2b2 −

√
3ab

Jz1,2 =
3

2
|a|2 + 1

2
|b|2 − 1

2
|b2| − 3

2
|a|2 = 0 (E.1.9)

Jy1,2 = ±
√
3Re(a) Im(b)± 2Re(b) Im(b)±

√
3Re(b) Im(a) = 0,

It is assumed, that each system is excited by a circular polarized laser pulse

tuned in the vicinity of an excited state with the total magnetic momentum

is J = 5/2. The other excited states with J = 3/2 and 1/2 are assumed to

be separated from the state with J = 5/2 by the energy, which is much larger

than the pulse spectral width. It is assumed that this state is not influenced by

the exchange interaction with the other sub-lattice. Thus, the Hamiltonians

acting on the excited states of systems 1 and 2 are simply ∆
(
3Ĵ2

z1,2 − Ĵ2
1,2

)
.

They are already diagonal and the eigenstates and energies of the excited state

are

|Jz1,2 = ±5/2〉, εex1 = εex + 10∆

|Jz1,2 = ±3/2〉, εex2 = εex + 2∆ (E.1.10)

|Jz1,2 = ±1/2〉, εex3 = εex − 8∆,

εex is the energy of the state in the absence of the crystal field, the index 1

and 2 is omitted.
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E.2 Time evolution due to the IFE

It was shown in Chapter 4 that the action of the IFE on the system with the

wave function, describing the ground-state manifold

Ψg(t) =




P1(t)

P2(t)

P3(t)

P4(t)


 (E.2.1)

can be represented by the operator

HJ =




−γ1 i(ν1 − ν2)P1P
∗
2 i(ν1 − ν3)P1P

∗
3 i(ν1 − ν4)P1P

∗
4

i(ν2 − ν1)P2P
∗
1 −γ2 i(ν2 − ν3)P2P

∗
3 i(ν2 − ν4)P2P

∗
3

i(ν3 − ν1)P3P
∗
1 i(ν3 − ν2)P3P

∗
2 −γ3 i(ν3 − ν4)P3P

∗
4

i(ν4 − ν1)P4P
∗
1 i(ν4 − ν2)P4P

∗
2 i(ν4 − ν3)P4P

∗
3 −γ4




(E.2.2)

= −
4∑

a

γana +
1

2

4∑

a,b

1

(papb)2
(νa − νb)(nab−n̂ab+ − nab+n̂ab−) ,

The operators n̂ab± are total momentum operators, which can be expressed by

a combination Ĵx, Ĵy, Ĵz and Ĵ
2. These operators can be represented by 4× 4

matrices with elements

If a < b, (nab+)ab = (nab+)ba = papb, (nab−)ab = −ipapb, (nab−)ba = ipapb,

if a = b, n̂aa± = n̂a, (na)aa = 1 (E.2.3)

(nab±)cd = 0, if c 6= a, c 6= b, d 6= a, d 6= b, or a > b

p2 = p3 = 1, p1 = p4 =

√
3

2
.

For example, n̂12+ =




0
√
3
2

0 0√
3
2

0 0 0

0 0 0 0

0 0 0 0


 , n̂12− =




0 −i
√
3
2

0 0

i
√
3
2

0 0 0

0 0 0 0

0 0 0 0


. Note,

that n̂ab± are used instead of the operators N̂ab± (see in Eq. (D.1.10)) for

convenience. N̂ab± are connected to the operators n̂ab± by the coefficients pa
and pb. The operators Ĵx,y,z can be represented via n̂ab± by

Ĵx = n̂12+ + n̂23+ + n̂34+ (E.2.4)

Ĵy = n̂12− + n̂23− + n̂34−

Ĵz =
3

2
n̂1 +

1

2
n̂2 −

1

2
n̂3 −

3

2
n̂4.
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E.2. Time evolution due to the IFE

νa = Re (Ya), γa = Im (Ya), Ya = [UA′]a/[UA]a, where U is the time

evolution operator, which acts on the ground state manifold. A is defined by

Ψg(t) = UATΨg(0)/N (t), N (t) = |Ψg(t)|. (E.2.5)

According to Eqs. (A.1.7) and (D.2.1) the a-th element of A is

Aa = 1− Ca/P0a, if P0a 6= 0; else Aa = 0, (E.2.6)

where P0a = Pa(0), Ca is the a-th element of the vector obtained by the action

of the operator in brackets on the initial wave function

C = −
[

3∑

j

∫ t

−∞
dt′ U−1V̂ e−iεexjt

∫ t′

−∞
dt′′eiεexjtV̂ U

]



P01

P02

P03

P04


 , (E.2.7)

the summation is over the excited states j. If the system 1 or 2 is excited by

a laser pulse with electric field

E =
nx + iny√

2
E · f(t/T ) sin(ω0t), (E.2.8)

then using the results of Appendix A.2 and applying the selection rules for the

excitation by left-circularly polarized light (see Table 6.1), the vector C can be

expressed as

C = E2|d0|2
[∫ t

−∞
dt′ U−1

]



2
3
F̂ (t′, εex1)Q1(t

′)
1
5
F̂ (t′, εex2)Q2(t

′)
1
10
F̂ (t′, εex3)Q3(t

′)
1
30
F̂ (t′, εex3)Q4(t

′)


 , (E.2.9)

where d0 = 〈ex, J = 5/2|r|g, J = 3/2〉, the vector Q(t) equals to U(t)Ψg(0),

and the action of the operator F̂ (t′, εexj) on Qk(t
′) is defined by

F̂ (t′, εexj)Qk(t
′) =f(t′/T ) cos(ω0t

′)e−iεexjt
′

(E.2.10)

×
∫ t′′

−∞
dt′′f(t′′/T ) cos(ω0t

′′)eiεexjt
′′
Qk(t

′′)

The factor (εk − εi)(εf − εk)/ω
2
0 should also enter the integral (E.2.10), where

εi and εf are the energies of the initial and final states. However, it is applied

that |εk − εi,f | −ω0 ≪ ω0, because detuning is at most of order 10−2 meV and

ω0 is several meV. Thus, (εk − εi)/ω0 ≈ 1, (εf − εk)/ω0 ≈ −1, and the factor

simply equal to -1 is taken.
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Chapter E. Dynamics of an easy plane antiferromagnet

E.3 Equations of motion

The formalism below is derived under the assumption that all atoms belonging

to one sub-lattice are excited coherently by a laser pulse. In this case, the

problem can be reduced to two systems, each consisting of one atom: the

system 1 of the atom from the sub-lattice 1 and the system 2 of the atom

from the sub-lattice 2. The dynamics of atom 1 and 2 are determined by the

effective Hamiltonians H(1)
0 +H(1)

J and H(2)
0 +H(2)

J , where

H(1)
0 = Hex1 +H(1)

cr , H(2)
0 = Hex2 +H(2)

cr (E.3.1)

Hex1 = Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1)

Hex2 = Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2),

H(1,2)
cr = ∆(Ĵ2

z1,2 +
15

4
)

H(1,2)
J = −

4∑

a

γ(1,2)a n(1,2)
a

+
1

2

4∑

a,b

1

(papb)2

(
ν(1,2)a − ν

(1,2)
b

)(
n
(1,2)
ab− n̂

(1,2)
ab+ − n

(1,2)
ab+ n̂

(1,2)
ab−

)
.

The operators n̂
(1)
ab± n̂

(2)
ab± act on system 1 and 2, correspondingly.

The functions ν
(1,2)
a and γ

(1,2)
a entering the operators H(1)

J and H(2)
J should

be equal, if they act on the equal systems: ν
(1)
a = ν

(2)
a , γ

(1)
a = γ

(2)
a . However,

the situation is complicated by the dependence of ν
(1,2)
a and γ

(1,2)
a on the time

evolution operator U , which is different for both systems, since the Hamilto-

nians Hex1 and Hex2 are not equal. Fortunately, as it will be shown later they

are equal anyway. Thus, νa and γa equal for both systems are taken.

The equations of motion of Jx1,x2, Jy1,y2 and Jz1,z2 are given by iJ ′
α1,α2 =

〈[H0 + H(1)
J + H(2)

J , Ĵα1,α2]〉. Applying that the equations of motions of n
(1,2)
ab±

due to the momentum operator describing the IFE are (see Eq. (4.19))

n
(1,2)
ab±

′
= (F + ν(1,2)a + ν

(1,2)
b )n

(1,2)
ab± ± (γa − γb)n

(1,2)
ab∓ , (E.3.2)

and using Eq. (E.2.4), the equations of motion of Jx,y,z1,2 during the excitation
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E.3. Equations of motion

can be found

J ′
x1,2 =F1(νk, n

(1,2)
k )Jx1,2 + g1Jy1,2 + f1n

(1,2)
12+ + f2n

(1,2)
34+ + g2n

(1,2)
12− + g3n

(1,2)
34−

± Jex(Jz1Jy2 − Jy1Jz2) + 3∆(−2n
(1,2)
12− + 2n

(1,2)
34− ) (E.3.3)

J ′
y1,2 =F1(νk, n

(1,2)
k )Jy1,2 − g1Jx1,2 + f1n

(1,2)
12− + f2n

(1,2)
34− − g2n

(1,2)
12+ − g3n

(1,2)
34+

± Jex(−Jz1Jx2 + Jx1Jz2) + 3∆(2n
(1,2)
12+ − 2n

(1,2)
34+ )

J ′
z1,2 =F1(νk, n

(1,2)
k )Jz1,2 + f3 + f4n

(1,2)
1 + f5n

(1,2)
4

± Jex(Jy1Jx2 − Jx1Jy2).

The following substitutions are used

g1(t) = (γ2 − γ3), g2(t) = (γ1 − 2γ2 + γ3), g3(t) = (−γ2 + 2γ3 − γ4)

f1(t) = ν1 − ν3, f2(t) = ν4 − ν2, f3(t) =
ν2 − ν3

2
f4(t) = 3ν1 − 2ν2 − ν3, f5(t) = ν2 + 2ν3 − 3ν4 (E.3.4)

F(νk, n
(1,2)
k ) = −2(ν1n

(1,2)
1 + ν2n

(1,2)
2 + ν3n

(1,2)
3 + ν4n

(1,2)
4 )

F1(νk, n
(1,2)
k ) = (F(νk, n

(1,2)
k ) + ν2 + ν3).

It is more convenient to consider the equations of motion of the components

of vectors M = M1+M2 and L = M1−M2, where M1,2 = (Jx1,2, Jy1,2, Jz1,2).

It is easy to show that M ′
x = 0 and M ′

y = 0 as follows. The dynamics of the

vector M is determined by three interactions acting on the systems 1 and 2:

the exchange interaction, the interaction with light via the IFE and the crystal

field interaction. It is shown below that each of the three interactions lead to

M ′
x = 0 and M ′

y = 0.

It can be easily seen that the exchange interaction does not influence M at

all: [Ĵx,y,z1+ Ĵx,y,z2,Hex1+Hex2] = 0. It was shown in Section 4.3.2 that if two

systems were initially aligned in such way that their z projections were equal

and x and y projections were opposite, then these relations would remain for

the dynamics induced by the IFE. It means that if Lz(0) = 0, Mx(0) = 0 and

My(0) = 0, then Lz(t) = 0, Mx(t) = 0 and My(t) = 0 due to the IFE. The

conditions are fulfilled and M ′
x = 0 and M ′

y = 0.

And finally, let us write the equations of motion for M due to the crystal
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Chapter E. Dynamics of an easy plane antiferromagnet

field only:

M ′
x =6∆(−m12− +m34−)

M ′
y =6∆(m12+ −m34+) (E.3.5)

m′
12+ =− 6∆m12−, m′

12− = 6∆m12+

m′
34+ =6∆m34−, m′

34− = −6∆m34+

M ′
z =0,

where mab± = n
(1)
ab± + n

(2)
ab±. The initial conditions of these equations are

m12±(0) = 0, m34±(0) = 0, Mx(0) = 0, My(0) = 0. Therefore, M ′
x = 0

and M ′
y = 0.

Thus, all three interactions lead to M ′
x = 0 and M ′

y = 0. Therefore, the

differential equations for the components of the vectors M and L are

M ′
x =0

M ′
y =0

M ′
z =F0(νa, ma)Mz +

1

2
F(νa, la)Lz + Fz(νa, ma)

L′
x =F0(νk, mk)Lx +

1

2
F(νk, lk)Mx + g(γa)Ly (E.3.6)

+ Fxy(νk, l12+, l34+) +Gxy(γk, l12−, l34−)

+ 3∆(−2l12− + 2l34−) + Jex(LzMy −MzLy)

L′
y =F0(νk, mk)Ly +

1

2
F(νa, la)My − g(γa)Lx

+ Fxy(νk, l12−, l34−)−Gxy(γk, l12+, l34+)

+ 3∆(2l12+ − 2l34+) + Jex(LxMz −MxLz)

L′
z =F0(νk, mk)Lz +

1

2
F(νk, lk)Mz + f4l1 + f5l4

+ Jex(LyMx − LxMy).

The substitutions applied:

F0(νk, mk) =
1

2
F (νk, mk) + ν2 + ν3

Fxy(νk, l12±, l34±) = f1l12± + f2l34±

Fz(νk, mk) = f3 + f4m1 + f5m4

Gxy(γk, l12±, l34±) = g2l12± + g3l34±

g(γk) = g1
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E.3. Equations of motion

The variables mab± and lab± are the expectation values of the operators

m̂ab± = n̂
(1)
ab± + n̂

(2)
ab±, l̂ab± = n̂

(1)
ab± − n̂

(2)
ab±. (E.3.7)

Since Mx(0) = 0, My(0) = 0, they remain zero: Mx(t) = 0, My(t) =

0. Substituting these relations to the equation for L′
z, one obtains that its

exchange part Jex(LyMx−LxMy) equals to zero. Thus, the dynamics of Lz is

determined by the IFE only, which leads to Lz(t) = 0, as was discussed above.

It will be also shown below that lk = 0. Thus, the equations of motions are

Mx =0, My = 0, Lz = 0

M ′
z =F0(νa, ma)Mz + Fz(νa, ma) (E.3.8)

L′
x =F0(νa, ma)Lx + g(γa)Ly + Fxy(νa, l12+, l34+) +G(γa, l12−, l34−)

+ 3∆(−2l12− + 2l34−)−JexMzLy

L′
y =F0(νa, ma)Ly − g(γa)Lx + Fxy(νa, l12−, l34−)−G(γa, l12+, l34+)

+ 3∆(2l12+ − 2l34+) + JexLxMz

The set of six equations is not sufficient to describe the dynamics of the

whole system, because, apart from the six variables Mx,y,z and Lx,y,z, the

functions mk and lab± also enter Eq. (E.3.9). The time derivative of each ex-

pectation value, which enters (E.3.9), has to be found in order to obtain the

complete set of the equations. The corresponding operators have to be com-

muted with the Hamiltonian, thereby new operators appear in the equations.

Therefore, it is convenient to solve the equations of motion for the expectation

values mab± and lab±, and express Mx,y,z and Lx,y,z via these variables using

Eqs. (E.2.4) and (E.3.7).

The full set of the equations involves 16 variables: l12±, l23±, l34±, l14±,
m13±, m24±, m1, m2, m3 and m4. Applying that

∑
kmk =

∑
k n

(1)+
∑

k n
(2) =

2, the system can be reduced to 15 equations. The other variables are zero at

any time: m12±(t) = 0, m23±(t) = 0, m34±(t) = 0, m14±(t) = 0, l13±(t) = 0,

l24±(t) = 0 and la(t) = 0. The proof for that is given for the dynamics due to

the IFE only. However, it can be done for the dynamics due to all interactions

together analogically. First, let us write the equation of motion for la using

Eqs. (E.3.2) and (E.3.7)

l′a =

(
1

2
F(νa, ma) + 2νa

)
la +

1

2
F(νa, la)mab± (E.3.9)

=

(
1

2
F(νa, ma) + 2νa

)
la −

(
∑

k

νklk

)
mab±.
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Chapter E. Dynamics of an easy plane antiferromagnet

It can be easily seen that la(t) = 0 due to the initial conditions lk(0) = 0.

Thus, the equations of motion for the remained variables can be written as

m′
ab± =

(
1

2
F(νa, ma) + νa + νb

)
mab± ± (γa − γb)mab∓ (E.3.10)

l′ab± =

(
1

2
F(νa, ma) + νa + νb

)
lab± ± (γa − γb)lab∓.

It follows from these equations that all variables mab±(t) and lab±(t), which
initial conditions are mab±(0) = 0 and lab±(0) = 0, remain zero.

Thus, the dynamics of the system can be described by 15 first order differ-

ential equations of the form

m′
ab± =

(
1

2
F(νa, ma) + νa + νb

)
mab± ± (γa − γb)mab∓ − i〈[m̂ab±,H0]〉

(E.3.11)

l′ab± =

(
1

2
F(νa, ma) + νa + νb

)
lab± ± (γa − γb)lab∓ − i〈[l̂ab±,H0]〉.

where the Hamiltonian H0 = H(1)
0 +H(2)

0 can be written as

H0 =
Jex

2

(
−LxL̂x − LyL̂y +MzM̂z

)
+3∆

(
M̂2

z + L̂2
z

2
+
Ĵ2
1 + Ĵ2

2

3

)
, (E.3.12)

where

L̂x = Ĵx1 − Ĵx2 = l̂12+ + l̂23+ + l̂34+

L̂y = Ĵy1 − Ĵy2 = l̂12− + l̂23− + l̂34− (E.3.13)

M̂z = Ĵz1 + Ĵz2 =
3

2
m̂1 +

1

2
m̂2 −

1

2
m̂3 −

3

2
m̂4.

These equations are solved numerically using fourth-order Runge-Kutta

method [140].

Table E.1 shows the time derivatives of all involved variables mab± and lab±
and corresponding expressions for −i〈[m̂ab±, Ô]〉 and −i〈[l̂ab±, Ô]〉, where Ô
denotes the operators entering H0: L̂x, L̂y, M̂z and (M̂2

z + L̂
2
z)/2. For instance,

it follows from Eqs. (E.3.11) and Table E.1 that

l′12+ =

(
1

2
F(νa, ma) + ν1 + ν2

)
l12+ + (γ1 − γ2)l12− (E.3.14)

− Jex

2

[
Lxm13− + Ly

(
3

2
m1 −

3

2
m2 −m13+

)
+Mzl12−

]
− 6∆l12−.
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L̂x L̂y M̂z
M̂2

z+L̂
2
z

2

l′12+ m13−
3
2
m1 − 3

2
m2 −m13+ −l12− −2l12−

l′12− −3
2
m1 +

3
2
m2 −m13+ −m13− l12+ 2l12+

l′23+ −m13− +m24− 2m2 − 2m3 −l23− 0

+m13+ −m24+

l′23− −2m2 + 2m3 m13− −m24− l23+ 0

+m13+ −m24+

l′34+ −m24−
3
2
m3 − 3

2
m4 +m24+ −l34− 2l34−

l′34− −3
2
m3 +

3
2
m4 +m24+ m24− l34+ −2l34+

l′14+
3
4
(m13− −m24−)

3
4
(m13+ −m24+) −3l14− 0

l′14−
3
4
(−m13+ +m24+)

3
4
(m13− −m24−) 3l14− 0

m′
13+ l12− + l14− − 3

4
l23− l12+ − l14+ − 3

4
l23+ −2m13− −2m13−

m′
13− −l12+ − l14+ + 3

4
l23+ l12− − l14− − 3

4
l23− 2m13+ 2m13+

m′
24+

3
4
l23− − l14− − l34− l14+ + 3

4
l23+ − l34+ −2m24− 2m24−

m′
24− −3

4
l23+ + l14+ + l34+ l14− + 3

4
l23− − l34− 2m24+ −2m24+

m′
1 l12− −l12+ 0 0

m′
2 l23− − l12− −l23+ + l12+ 0 0

m′
3 −l23− + l34− l23+ − l34+ 0 0

m′
4 −l34− l34+ 0 0

.

Table E.1: First column: k′, which is equal to −i〈[k̂,H0 + HJ ]〉, where k̂ is

l̂ab± or m̂ab±. Four left columns: −i〈[k̂, Ô]〉, where Ô denotes the operators

entering H0: L̂x, L̂y, M̂z and M̂
2
z .

E.3.1 Functions νa and γa.

It is shown in this subsection that ν
(1)
a = ν

(2)
a and γ

(1)
a = γ

(2)
a . These functions

depend on the operator U (see Eq. D.2.4), the time evolution operator de-

fined by H0 U = iU ′. According to Eqs. (E.1.1) and (E.1.2), the Hamiltonian

H0 consists of two parts: the one describing the crystal field, which is time-

independent, and the one describing the exchange interaction, which depends

on the expectation values Jx,y,z1,2. Jx,y,z1,2 change in time due to the action

of the ultrafast IFE. This means, that the Hamiltonian is time-dependent and

the time evolution operator cannot be written in the from of the matrix expo-

nential: U 6= e−iH0t. Therefore, it is calculated numerically.

In order to calculate the action of the time evolution operator U , one has to
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Chapter E. Dynamics of an easy plane antiferromagnet

use that by definition U(t0, 0)Ψ(t0) is the solution Ψ̃(t0) of the time-dependent

Schrödinger equation iΨ̃′ = H0Ψ̃ at time t0 with the boundary conditions

Ψ̃(0) = Ψ(t0). The following equations have to be solved to find the action of

the operator U on the wave functions Ψ(1,2) belonging to the system and 1 and

2

i(Ψ(1))′(t′) = (Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1) + ∆(3Ĵ2
z1 − Ĵ2

1 ))Ψ
(1)(t′)
(E.3.1.1)

i(Ψ(2))′(t′) = (Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2) + ∆(3Ĵ2
z2 − Ĵ2

2 ))Ψ
(2)(t′).

Therefore, the functions ν
(1,2)
a (t) and γ

(1,2)
a (t) should be calculated at every time

step using the new values of Jx,y,z1,2, while solving the differential equations

of motion. The differential equations E.3.1.1 are solved numerically using the

Euler method [140].

Applying Jx1,y1 = −Jx2,y2 and Jz1 = Jz2 to H0, it can be shown that if the

action of the Hamiltonian H0 on a vector of the following form is H0




a

b

c

d


 =




ah
bh
ch
dh


, then H0




a

−b
c

−d


 =




ah
−bh
ch
−dh


. Thus, the same is true for the operators U

and U−1: if U (−1)




a

b

c

d


 =




a1
b1
c1
d1


, then U (−1)




a

−b
c

−d


 =




a1
−b1
c1

−d1,


. Applying this

condition to Eqs. (E.2.7) and (E.2.6), it can be easily shown that ν
(1)
a = ν

(2)
a

and γ
(1)
a = γ

(2)
a , which is consistent with the initial assumption. However, it

still has to be accounted that functions νa(t) and γa(t) depend on the values

of Lx(t), Ly(t) and Mz(t).

E.4 Results

E.4.1 Zero crystal field

Assume that the crystal field is zero. Although the operators l̂ab± and m̂ab± do

not have to be commuted with the crystal field Hamiltonian, the system of the

equations describing the motion of the vectors M and L during the excitation
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still cannot be reduced. It was discussed in Section 4.3.2 that this system

should contain nine equations involving the variables m1, m2, m3, l12±, l23±,
l34±. When the corresponding operators are commuted with L̂x, L̂y and M̂z,

new variables appear (see Table E.1) expanding the system to 15 equations.

However, the system involves only three variables Lx, Ly and Mz after the

excitation has finished (see Eq. E.3.9)

L′
x = −ωJLy

L′
y = ωJLx

Mz(t > τp) =Mz0 = const (E.4.1.1)

ωJ = JexMz0.

These equations describe the circular rotation of M1 and M2 around the z axis

with the frequency proportional to the value ofMz, which is constant after the

excitation.

E.4.2 Zero exchange interaction

Assume that the exchange interaction is negligibly small, but the crystal field

is considerable. The unperturbed Hamiltonian in this case is H0 = H(1,2)
cr =

∆
(
3J2

z1,2 − 15/4
)
. The Hamiltonians H(1,2)

cr do not depend on time and are

diagonal. Therefore, the time evolution operator is simply U = e−iHcrt, which

is a diagonal matrix.

The next simplification is that the system of the equations can be reduced

by the fact that the operators l̂ab± and m̂ab± do not have to be commuted with

L̂x, L̂y and M̂z. Therefore, in order to describe the motion of the vectors L

and M during the excitation, one needs only nine equations for the variables

m1, m2, m3, l12±, l23±, l34±.

Let us look into the dynamics of the M and L vectors after the time τp,

when the excitation has finished. The functions γa(t > τp) and νa(t > τp) are

zero, thus, the equations of motion after the action of the laser pulse are

l′23± =0 m′
k = 0

l′12+ =− 6∆ l12−, l′12− = 6∆ l12+ (E.4.2.1)

l′34+ =6∆ l34−, l′34− = −6∆ l34+
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These equations can be easily solved

l23± = const mk = const

l12+(t) = A12 cos(6∆t + φ12)

l12−(t) = A12 sin(6∆t+ φ12) (E.4.2.2)

l34+(t) = A34 cos(6∆t− φ34)

l34−(t) = −A34 sin(6∆t− φ34)

lab+(0) + ilab−(0) = Aabe
iφab, Aab = |lab+(0) + ilab−(0)|

Thus, the dynamics of the vectors L and M is given by the equations

Lx = A12 cos(6∆t + φ12) + A34 cos(6∆t− φ34) + Cx

Ly = A12 sin(6∆t + φ12)− A34 sin(6∆t− φ34) + Cy (E.4.2.3)

Cx = l23+(τp) = const, Cy = l23−(τp) = const

Mx =My = 0, Mz = const

These equations describe the elliptical rotation of the vector L around the

z-axis with a constant z-component.

The elliptical mode cannot be excited in this system without the exchange

interaction. It can be easily obtained that the initial states in the case of

Hamiltonian Hcr = ∆(3J2
z − 15/4) are

Ψ
(1)
0 =




0
1√
2
1√
2

0


 , Ψ

(2)
0 =




0

− 1√
2

1√
2

0


 . (E.4.2.4)

Writing the equations of motions for the variables l12± and l34±

l′12± =(F(νk, mk) + ν1 + ν2)l12± ± (γ1 − γ2)l12∓ ∓ 6∆l12∓ (E.4.2.5)

l′34± =(F(νk, mk) + ν3 + ν4)l34± ± (γ3 − γ4)l34∓ ∓ 6∆l34∓

and applying the boundary conditions l12±(0) = l34±(0) = 0, it can be easily

seen that l′12±(t) = l′34±(t) = 0. Thus, the system of the equations, which

describes the dynamics of the system during the excitation can be further

reduced to five equations involving the variables m1, m2, m3 and n23±.
The variables l12± and l34± are zero at any time, and the motion of Lx

and Ly is determined only by l23±: Lx(t) = l12+(t) + l23+(t) + l34+(t) = l23+(t)

and Ly(t) = l12−(t) + l23−(t) + l34−(t) = l23−(t). Since operators l̂23± commute
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with the crystal field Hamiltonian (see Table (E.1)), l23±(t > τp) are constant

after the excitation. Thus, Lx and Ly do not change after the excitation. In

the terms of energy, this means that the Raman transitions to states with

different energy are not allowed in the absence of the exchange interaction in

our system. The elliptical mode can be excited in the presence of the exchange

interaction, because the boundary conditions of Eq. (E.4.2.5) are different.
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