001     15421
005     20200423203000.0
024 7 _ |2 DOI
|a 10.1103/PhysRevLett.105.246603
024 7 _ |2 WOS
|a WOS:000286744500010
024 7 _ |2 Handle
|a 2128/7293
037 _ _ |a PreJuSER-15421
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Schmalbuch, K.
|b 0
245 _ _ |a Two-Dimensional Optical Control of Electron Spin Orientation by Linearly Polarized Light in InGaAs
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 246603
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4925
|a Physical Review Letters
|v 105
|x 0031-9007
|y 24
500 _ _ |a This work was supported by DFG through FOR 912.
520 _ _ |a Optical absorption of circularly polarized light is well known to yield an electron spin polarization in direct band gap semiconductors. We demonstrate that electron spins can even be generated with high efficiency by absorption of linearly polarized light in InxGa1-xAs. By changing the incident linear polarization direction we can selectively excite spins in both polar and transverse directions. These directions can be identified by the phase during spin precession using time-resolved Faraday rotation. We show that the spin orientations do not depend on the crystal axes suggesting an extrinsic excitation mechanism.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Göbbels, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Schäfers, Ph.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Rodenbücher, Ch.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Schlammes, P.
|b 4
700 1 _ |0 P:(DE-Juel1)128634
|a Schäpers, Th.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB98879
|a Lepsa, M.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Güntherodt, G.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Beschoten, B.
|b 8
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.105.246603
|g Vol. 105, p. 246603
|p 246603
|q 105<246603
|t Physical review letters
|v 105
|x 0031-9007
|y 2010
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.105.246603
856 4 _ |u https://juser.fz-juelich.de/record/15421/files/FZJ-15421.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/15421/files/FZJ-15421.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15421/files/FZJ-15421.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15421/files/FZJ-15421.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:15421
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |a Nachtrag
|y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)128341
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21