000154254 001__ 154254
000154254 005__ 20240610121117.0
000154254 0247_ $$2WOS$$aWOS:000336947200007
000154254 037__ $$aFZJ-2014-03630
000154254 041__ $$aEnglish
000154254 082__ $$a530
000154254 1001_ $$0P:(DE-Juel1)130621$$aDivin, Yuri$$b0$$eCorresponding Author$$ufzj
000154254 245__ $$aFeasibility of ECE measurements using Hilbert-transform spectral analysis
000154254 260__ $$aLa Grange Park, Ill.$$bAmerican Nuclear Society$$c2014
000154254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1403872978_4389
000154254 3367_ $$2DataCite$$aOutput Types/Journal article
000154254 3367_ $$00$$2EndNote$$aJournal Article
000154254 3367_ $$2BibTeX$$aARTICLE
000154254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154254 3367_ $$2DRIVER$$aarticle
000154254 520__ $$aElectron cyclotron emission (ECE) from hot tokamak plasmas is recognized nowadays as a very informative diagnostic of main plasma parameters. Among several instruments developed to measure ECE, only a Martin-Puplett interferometer operates in a broadband frequency range of ECE from 70 to 1000 GHz. To derive the absolute radiation temperature of the plasma, a total measurement system, including front-end radiation collection, a transmission line, and the interferometer, is calibrated using a hot/cold calibration source. It takes a long time to calibrate the ECE system because of the high values of the noise equivalent power (NEP). A new technique, Hilbert-transform spectral analysis, is proposed for ITER plasma ECE spectral measurements. The operation principle, characteristics, and advantages of the corresponding Hilbert-transform spectrum analyzer (HTSA) based on a high-Tc Josephson detector are described. Because of the lower NEP values of the Josephson detector, this spectrum analyzer might demonstrate shorter calibration times than those for the Martin-Puplett interferometer. Because of a principal difference between Fourier and Hilbert transforms, the HTSA might have an additional advantage in retrieving harmonic ECE radiation from a continuous thermal background.
000154254 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000154254 7001_ $$0P:(DE-HGF)0$$aPandya, H. K. B.$$b1
000154254 773__ $$0PERI:(DE-600)2132501-7$$p399-405 3$$tFusion science and technology$$v65$$x0748-1896$$y2014
000154254 909CO $$ooai:juser.fz-juelich.de:154254$$pVDB
000154254 9141_ $$y2014
000154254 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154254 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154254 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154254 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154254 9132_ $$0G:(DE-HGF)POF3-423$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vSpace Science and Exploration$$x0
000154254 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000154254 920__ $$lyes
000154254 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000154254 980__ $$ajournal
000154254 980__ $$aVDB
000154254 980__ $$aI:(DE-Juel1)PGI-5-20110106
000154254 980__ $$aUNRESTRICTED
000154254 981__ $$aI:(DE-Juel1)ER-C-1-20170209