001     154254
005     20240610121117.0
024 7 _ |2 WOS
|a WOS:000336947200007
037 _ _ |a FZJ-2014-03630
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130621
|a Divin, Yuri
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Feasibility of ECE measurements using Hilbert-transform spectral analysis
260 _ _ |a La Grange Park, Ill.
|b American Nuclear Society
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1403872978_4389
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Electron cyclotron emission (ECE) from hot tokamak plasmas is recognized nowadays as a very informative diagnostic of main plasma parameters. Among several instruments developed to measure ECE, only a Martin-Puplett interferometer operates in a broadband frequency range of ECE from 70 to 1000 GHz. To derive the absolute radiation temperature of the plasma, a total measurement system, including front-end radiation collection, a transmission line, and the interferometer, is calibrated using a hot/cold calibration source. It takes a long time to calibrate the ECE system because of the high values of the noise equivalent power (NEP). A new technique, Hilbert-transform spectral analysis, is proposed for ITER plasma ECE spectral measurements. The operation principle, characteristics, and advantages of the corresponding Hilbert-transform spectrum analyzer (HTSA) based on a high-Tc Josephson detector are described. Because of the lower NEP values of the Josephson detector, this spectrum analyzer might demonstrate shorter calibration times than those for the Martin-Puplett interferometer. Because of a principal difference between Fourier and Hilbert transforms, the HTSA might have an additional advantage in retrieving harmonic ECE radiation from a continuous thermal background.
536 _ _ |0 G:(DE-HGF)POF2-423
|a 423 - Sensorics and bioinspired systems (POF2-423)
|c POF2-423
|f POF II
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Pandya, H. K. B.
|b 1
773 _ _ |0 PERI:(DE-600)2132501-7
|p 399-405 3
|t Fusion science and technology
|v 65
|x 0748-1896
|y 2014
909 C O |o oai:juser.fz-juelich.de:154254
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130621
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-423
|1 G:(DE-HGF)POF3-420
|2 G:(DE-HGF)POF3-400
|a DE-HGF
|b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr
|l Raumfahrt
|v Space Science and Exploration
|x 0
913 1 _ |0 G:(DE-HGF)POF2-423
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21