000154370 001__ 154370
000154370 005__ 20240712100843.0
000154370 0247_ $$2doi$$a10.1002/2014JD021808
000154370 0247_ $$2WOS$$aWOS:000342914200007
000154370 0247_ $$2Handle$$a2128/16101
000154370 037__ $$aFZJ-2014-03718
000154370 082__ $$a550
000154370 1001_ $$0P:(DE-Juel1)159127$$aPeevey, Tanya$$b0$$eCorresponding Author$$ufzj
000154370 245__ $$aThe double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions
000154370 260__ $$aWashington, DC$$bUnion$$c2014
000154370 3367_ $$2DRIVER$$aarticle
000154370 3367_ $$2DataCite$$aOutput Types/Journal article
000154370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414423923_32634
000154370 3367_ $$2BibTeX$$aARTICLE
000154370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154370 3367_ $$00$$2EndNote$$aJournal Article
000154370 520__ $$aUsing High Resolution Dynamic Limb Sounder observations and ERA-Interim reanalysis this study demonstrates that the warm conveyor belt (WCB) is a mechanism responsible for the relationship between the double tropopause (DT) and the tropopause inversion layer (TIL), a relationship recently suggested in the literature based on idealized model simulations of baroclinic disturbances. Using these data sets, spatial and temporal characteristics of the DT-TIL relationship are examined over a 3 year period, 2005–2008. In the extratropics, results from satellite data show that as the TIL increases in strength, so does the frequency of the DT, regardless of season or hemisphere. The inverse relationship is found in the tropics. Using only DT profiles, zonal composites of wind, relative vorticity, and temperature from reanalysis data show that as the TIL increases in strength, the upper tropospheric circulation switches from cyclonic to anticyclonic, and the upward vertical motion increases. This result suggests the WCB as a mechanism since it is on the anticyclonic side of the jet and is characterized by the movement of tropical air poleward and upward from the surface. To verify this relationship, the vertical and horizontal development of a synoptic-scale baroclinic system is analyzed over a 4 day period. Results show the equatorward extension of the polar tropopause, and thus the formation of the DT, due to the strengthening of the TIL in the region of vertical motion associated with the WCB. Moreover, this result suggests that air movement within the DT could originate from high latitudes when associated with a baroclinic disturbance.
000154370 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000154370 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154370 7001_ $$0P:(DE-HGF)0$$aGille, J. C.$$b1
000154370 7001_ $$0P:(DE-HGF)0$$aHomeyer, C. R.$$b2
000154370 7001_ $$0P:(DE-HGF)0$$aManney, G. L.$$b3
000154370 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2014JD021808$$n17$$p10,194–10,212$$tJournal of geophysical research / Atmospheres$$v119$$x0148-0227$$y2014
000154370 8564_ $$uhttps://juser.fz-juelich.de/record/154370/files/FZJ-2014-03718.pdf$$yOpenAccess
000154370 8767_ $$92014-09-19$$d2015-01-08$$ePage charges$$jZahlung erfolgt$$zUSD 1.125,-
000154370 909CO $$ooai:juser.fz-juelich.de:154370$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000154370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154370 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vAtmosphäre und Klima$$x0
000154370 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000154370 9141_ $$y2014
000154370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154370 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154370 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154370 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000154370 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154370 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000154370 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000154370 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154370 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154370 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000154370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154370 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000154370 9801_ $$aFullTexts
000154370 980__ $$ajournal
000154370 980__ $$aVDB
000154370 980__ $$aUNRESTRICTED
000154370 980__ $$aI:(DE-Juel1)IEK-7-20101013
000154370 980__ $$aAPC
000154370 981__ $$aI:(DE-Juel1)ICE-4-20101013