000154373 001__ 154373
000154373 005__ 20210129213905.0
000154373 0247_ $$2doi$$a10.1007/s11104-014-2188-4
000154373 0247_ $$2ISSN$$a0032-079X
000154373 0247_ $$2ISSN$$a1573-5036
000154373 0247_ $$2WOS$$aWOS:000344336200008
000154373 037__ $$aFZJ-2014-03721
000154373 041__ $$aEnglish
000154373 082__ $$a570
000154373 1001_ $$0P:(DE-Juel1)144686$$aHuber, Katrin$$b0$$eCorresponding Author$$ufzj
000154373 245__ $$aModelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures
000154373 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000154373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414424101_32638
000154373 3367_ $$2DataCite$$aOutput Types/Journal article
000154373 3367_ $$00$$2EndNote$$aJournal Article
000154373 3367_ $$2BibTeX$$aARTICLE
000154373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154373 3367_ $$2DRIVER$$aarticle
000154373 520__ $$aAims: A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.Methods: Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al.2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H+C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.Results: While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H+C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction. Conclusions: Although simulations with H+C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.
000154373 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000154373 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000154373 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154373 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b1$$ufzj
000154373 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b2$$ufzj
000154373 7001_ $$0P:(DE-Juel1)140338$$aSchröder, Natalie$$b3$$ufzj
000154373 7001_ $$0P:(DE-HGF)0$$aDodd, Ian C.$$b4
000154373 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000154373 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-014-2188-4$$n1-2$$p93-112$$tPlant and soil$$v384$$x1573-5036$$y2014
000154373 8564_ $$uhttps://juser.fz-juelich.de/record/154373/files/FZJ-2014-03721.pdf$$yRestricted
000154373 909CO $$ooai:juser.fz-juelich.de:154373$$pVDB:Earth_Environment$$pVDB
000154373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144686$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140338$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000154373 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000154373 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000154373 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000154373 9141_ $$y2014
000154373 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154373 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154373 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154373 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154373 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154373 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154373 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000154373 920__ $$lyes
000154373 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000154373 980__ $$ajournal
000154373 980__ $$aVDB
000154373 980__ $$aI:(DE-Juel1)IBG-3-20101118
000154373 980__ $$aUNRESTRICTED