| Hauptseite > Publikationsdatenbank > Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures > print |
| 001 | 154373 | ||
| 005 | 20210129213905.0 | ||
| 024 | 7 | _ | |a 10.1007/s11104-014-2188-4 |2 doi |
| 024 | 7 | _ | |a 0032-079X |2 ISSN |
| 024 | 7 | _ | |a 1573-5036 |2 ISSN |
| 024 | 7 | _ | |a WOS:000344336200008 |2 WOS |
| 037 | _ | _ | |a FZJ-2014-03721 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Huber, Katrin |0 P:(DE-Juel1)144686 |b 0 |e Corresponding Author |u fzj |
| 245 | _ | _ | |a Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures |
| 260 | _ | _ | |a Dordrecht [u.a.] |c 2014 |b Springer Science + Business Media B.V |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1414424101_32638 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a Aims: A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.Methods: Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al.2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H+C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.Results: While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H+C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction. Conclusions: Although simulations with H+C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone. |
| 536 | _ | _ | |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246) |0 G:(DE-HGF)POF2-246 |c POF2-246 |f POF II |x 0 |
| 536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |a Vanderborght, Jan |0 P:(DE-Juel1)129548 |b 1 |u fzj |
| 700 | 1 | _ | |a Javaux, Mathieu |0 P:(DE-Juel1)129477 |b 2 |u fzj |
| 700 | 1 | _ | |a Schröder, Natalie |0 P:(DE-Juel1)140338 |b 3 |u fzj |
| 700 | 1 | _ | |a Dodd, Ian C. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 5 |u fzj |
| 773 | _ | _ | |a 10.1007/s11104-014-2188-4 |0 PERI:(DE-600)1478535-3 |n 1-2 |p 93-112 |t Plant and soil |v 384 |y 2014 |x 1573-5036 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/154373/files/FZJ-2014-03721.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:154373 |p VDB |p VDB:Earth_Environment |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144686 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129548 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129477 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140338 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129549 |
| 913 | 2 | _ | |a DE-HGF |b POF III |l Marine, Küsten- und Polare Systeme |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrische Umwelt |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Erde und Umwelt |l Terrestrische Umwelt |1 G:(DE-HGF)POF2-240 |0 G:(DE-HGF)POF2-246 |2 G:(DE-HGF)POF2-200 |v Modelling and Monitoring Terrestrial Systems: Methods and Technologies |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
| 913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-255 |x 1 |v Terrestrial Systems: From Observation to Prediction |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |l Terrestrische Umwelt |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
| 914 | 1 | _ | |y 2014 |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|