000015439 001__ 15439
000015439 005__ 20210129210625.0
000015439 0247_ $$2DOI$$a10.1103/PhysRevD.83.074508
000015439 0247_ $$2WOS$$aWOS:000290110100003
000015439 0247_ $$2Handle$$a2128/11143
000015439 037__ $$aPreJuSER-15439
000015439 041__ $$aeng
000015439 082__ $$a530
000015439 084__ $$2WoS$$aAstronomy & Astrophysics
000015439 084__ $$2WoS$$aPhysics, Particles & Fields
000015439 1001_ $$0P:(DE-HGF)0$$aAoki, Y.$$b0
000015439 245__ $$aContinuum Limit Physics from 2+1 Flavor Domain Wall QCD
000015439 260__ $$a[S.l.]$$bSoc.$$c2011
000015439 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2011-04-22
000015439 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2011-04-01
000015439 300__ $$a074508
000015439 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015439 3367_ $$2DataCite$$aOutput Types/Journal article
000015439 3367_ $$00$$2EndNote$$aJournal Article
000015439 3367_ $$2BibTeX$$aARTICLE
000015439 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015439 3367_ $$2DRIVER$$aarticle
000015439 440_0 $$04923$$aPhysical Review D$$v83$$x1550-7998$$y7
000015439 500__ $$aThe calculations reported here were performed on the QCDOC computers [80-82] at Columbia University, Edinburgh University, and at the Brookhaven National Laboratory (BNL). At BNL, the QCDOC computers of the RIKEN-BNL Research Center and the USQCD Collaboration were used. Most important were the computer resources of the Argonne Leadership Class Facility (ALCF) provided under the Incite Program of the U. S. DOE. The very large-scale capability of the ALCF was critical for carrying out the challenging calculations reported here. We also thank the University of Southampton for access to the Iridis computer system used in the calculations of the nonperturbative renormalization factors (with support from UK STFC Grant No. ST/H008888/1). The software used includes: the CPS QCD codes http://qcdoc.phys.columbia.edu/chulwoo/index.html, supported in part by the U.S. DOE SciDAC program; the BAGEL http://www.ph.ed.ac.uk/ paboyle/bagel/Bagel.html assembler kernel generator for many of the high-performance optimized kernels [25]; and the UKHADRON codes. Y. A. is partially supported by JSPS Kakenhi Grant No. 21540289. R. A., P. A. B., B. J. P., and J. M. Z. were partially supported by UK STFC Grant No. ST/G000522/1. T. B. and R. Z. were supported by U.S. DOE Grant No. DE-FG02-92ER40716. D. B., J. M. F., and C. T. S. were partially supported by UK STFC Grant No. ST/G000557/1 and by EU Contract No. MRTN-CT-2006-035482 (Flavianet). N. H. C., M. L., and R. D. M. were supported by U.S. DOE Grant No. DE-FG02-92ER40699. C. J., T. I., and A. S. are partially supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. E. E. S. is partly supported by DFG SFB/TR 55 and by the Research Executive Agency of the European Union under Grant No. PITN-GA-2009-238353 (ITN STRONGnet).
000015439 520__ $$aWe present physical results obtained from simulations using 2 + 1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a(-1) = 1.73(3) GeV and a(-1) = 2.28(3) GeV]. On the coarser lattice, with 24(3) x 64 x 16 points (where the 16 corresponds to L-s, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 32(3) x 64 x 16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290-420 MeV (225-420 MeV for partially quenched pions). We use the masses of the pi and K mesons and the Omega baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for f(pi), the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include f(pi) = 124(2)(stat)(5)(syst) MeV, f(K)/f(pi) = 1.204(7)(25) where f(K) is the kaon decay constant, m(s)((MS) over bar) (2 GeV) = (96.2 +/- 2.7) MeV and m(s)((MS) over bar) (2 GeV) (3.59 +/- 0.21) MeV (m(s)/m(ud) = 26.8 +/- 1.4) where m(s) and m(ud) are the mass of the strange quark and the average of the up and down quark masses, respectively, [Sigma((MS) over bar) (2 GeV)(1/3) = 256(6) MeV, where Sigma is the chiral condensate, the Sommer scale r(0) = 0.487(9) fm and r(1) = 0.333(9) fm.
000015439 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000015439 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000015439 542__ $$2Crossref$$i2011-04-22$$uhttp://link.aps.org/licenses/aps-default-license
000015439 542__ $$2Crossref$$i2012-04-21$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000015439 588__ $$aDataset connected to Web of Science
000015439 650_7 $$2WoSType$$aJ
000015439 7001_ $$0P:(DE-HGF)0$$aArthur, R.$$b1
000015439 7001_ $$0P:(DE-HGF)0$$aBlum, T.$$b2
000015439 7001_ $$0P:(DE-HGF)0$$aBoyle, P.$$b3
000015439 7001_ $$0P:(DE-Juel1)143606$$aBrömmel, D.$$b4$$uFZJ
000015439 7001_ $$0P:(DE-HGF)0$$aChrist, N.$$b5
000015439 7001_ $$0P:(DE-HGF)0$$aDawson, C.$$b6
000015439 7001_ $$0P:(DE-HGF)0$$aFlynn, J.$$b7
000015439 7001_ $$0P:(DE-HGF)0$$aIzubuchi, T.$$b8
000015439 7001_ $$0P:(DE-HGF)0$$aJin, X.$$b9
000015439 7001_ $$0P:(DE-HGF)0$$aJung, C.$$b10
000015439 7001_ $$0P:(DE-HGF)0$$aKelly, C.$$b11
000015439 7001_ $$0P:(DE-HGF)0$$aLi, M.$$b12
000015439 7001_ $$0P:(DE-HGF)0$$aLichtl, A.$$b13
000015439 7001_ $$0P:(DE-HGF)0$$aLightman, M.$$b14
000015439 7001_ $$0P:(DE-HGF)0$$aLin, M.$$b15
000015439 7001_ $$0P:(DE-HGF)0$$aMawhinney, R.$$b16
000015439 7001_ $$0P:(DE-HGF)0$$aMaynard, C.$$b17
000015439 7001_ $$0P:(DE-HGF)0$$aOhta, S.$$b18
000015439 7001_ $$0P:(DE-HGF)0$$aPendleton, B.$$b19
000015439 7001_ $$0P:(DE-HGF)0$$aSachrajda, C.$$b20
000015439 7001_ $$0P:(DE-HGF)0$$aScholz, E.$$b21
000015439 7001_ $$0P:(DE-HGF)0$$aSoni, A.$$b22
000015439 7001_ $$0P:(DE-HGF)0$$aWennekers, J.$$b23
000015439 7001_ $$0P:(DE-HGF)0$$aZanotti, J.$$b24
000015439 7001_ $$0P:(DE-HGF)0$$aZhou, R.$$b25
000015439 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.83.074508$$b : American Physical Society (APS), 2011-04-22$$n7$$p074508$$tPhysical Review D$$v83$$x1550-7998$$y2011
000015439 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.83.074508$$gVol. 83, p. 074508$$n7$$p074508$$q83<074508$$tPhysical review / D$$v83$$x1550-7998$$y2011
000015439 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevD.83.074508
000015439 8564_ $$uhttps://juser.fz-juelich.de/record/15439/files/PhysRevD.83.074508.pdf$$yOpenAccess
000015439 8564_ $$uhttps://juser.fz-juelich.de/record/15439/files/PhysRevD.83.074508.gif?subformat=icon$$xicon$$yOpenAccess
000015439 8564_ $$uhttps://juser.fz-juelich.de/record/15439/files/PhysRevD.83.074508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000015439 8564_ $$uhttps://juser.fz-juelich.de/record/15439/files/PhysRevD.83.074508.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000015439 8564_ $$uhttps://juser.fz-juelich.de/record/15439/files/PhysRevD.83.074508.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000015439 909CO $$ooai:juser.fz-juelich.de:15439$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000015439 9141_ $$y2011
000015439 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000015439 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015439 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015439 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000015439 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000015439 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000015439 970__ $$aVDB:(DE-Juel1)128359
000015439 980__ $$aVDB
000015439 980__ $$aConvertedRecord
000015439 980__ $$ajournal
000015439 980__ $$aI:(DE-Juel1)JSC-20090406
000015439 980__ $$aUNRESTRICTED
000015439 9801_ $$aFullTexts