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We present physical results obtained from simulations using 2þ 1 flavors of domain wall quarks and

the Iwasaki gauge action at two values of the lattice spacing a, [a�1 ¼ 1:73ð3Þ GeV and a�1 ¼
2:28ð3Þ GeV]. On the coarser lattice, with 243 � 64� 16 points (where the 16 corresponds to Ls, the

extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C.

Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the

number of configurations. The ensembles on the finer 323 � 64� 16 lattice are new. We explain in detail

how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses

in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark

masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in

the approximate range 290–420 MeV (225–420 MeV for partially quenched pions). We use the masses of

the � and K mesons and the � baryon to determine the physical quark masses and the values of the

lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-

leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz

leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to

reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for

f�, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic

error. Our main results include f� ¼ 124ð2Þstatð5Þsyst MeV, fK=f� ¼ 1:204ð7Þð25Þ where fK is the kaon

decay constant, mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV and mMS

ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV (ms=mud ¼
26:8� 1:4) where ms and mud are the mass of the strange quark and the average of the up and down

quark masses, respectively, ½�MSð2 GeVÞ�1=3 ¼ 256ð6Þ MeV, where � is the chiral condensate, the

Sommer scale r0 ¼ 0:487ð9Þ fm and r1 ¼ 0:333ð9Þ fm.

DOI: 10.1103/PhysRevD.83.074508 PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.39.Fe

I. INTRODUCTION

For several years now, the RBC and UKQCD

Collaborations have been undertaking a major programme

of research in particle physics using lattice QCD with

domain wall fermions (DWF) and the Iwasaki gauge ac-

tion. In the series of papers, [1–3], we studied general

properties of ensembles with an inverse lattice spacing of

a�1 ¼ 1:73ð3Þ GeV (corresponding to � ¼ 2:13) and with

unitary pion masses m� � 330 MeV (partially quenched

m� * 240 MeV). The number of points in these ensem-

bles are 163 � 32� 8 [2], 163 � 32� 16 [3], and 243 �
64� 16 [1], where the fifth dimension is a feature of DWF

and is not visible to low-energy physics which remains

four-dimensional. We do not review the properties of DWF

here, beyond underlining their physical chiral and flavor

properties which we exploit in much of our wider scientific

programme. We have used these ensembles to investigate a
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broad range of physics, including studies of the hadronic

spectrum, mesonic decay constants, and light-quark

masses [1], the evaluation of the BK parameter of

neutral-kaon mixing [1,4], the calculation of the form-

factors of K‘3 decays [5,6], studies in nucleon structure

[7–9] and proton decay matrix elements [10], and very

recently the first lattice study of the masses and mixing

of the � and �0 mesons [11] as well as a determination of

the matrix elements relevant for neutral B-meson mixing in

the static limit [12]. A key limiting factor in the precision

of these results was that the simulations were performed at

a single lattice spacing. In this paper we remove this

limitation, by presenting results for the spectrum, decay

constants and quark masses obtained with the same lattice

action using ensembles generated on a 323 � 64� 16
lattice at a second value of the lattice spacing correspond-

ing to � ¼ 2:25, for which we will see below that a�1 ¼
2:28ð3Þ GeV. Now that we have results for the same

physical quantities with the same action at two values of

the lattice spacing we are able to perform a continuum

extrapolation and below we will present physical results in

the continuum limit.

Since the most precise results at� ¼ 2:13were obtained
on the 243 � 64� 16 [1] lattices, as a shorthand through-

out this paper we will refer to these lattices as the 243

ensembles and label the new lattices at� ¼ 2:25 as the 323

ensembles.

The new 323 ensembles at � ¼ 2:25 will, of course, be

widely used also in our studies of other physical quantities.

In this first paper however, we discuss their properties in

some detail (see Sec. II). In this section we also discuss

reweighting which allows us to eliminate one source of

systematic uncertainty. While at present we cannot simu-

late with physical u and d quark masses, there is no reason,

in principle, why we cannot simulate with the physical

strange-quark mass. The difficulty, however, is that we

do not know a priori what this mass is and so in practice

the simulations are performed with a strange-quark mass

which is a little different from the physical one. As ex-

plained in Sec. II D, the technique of reweighting allows us

to correct a posteriori for the small difference in the

simulated and physical strange-quark masses. In Sec. III,

we present updated raw results for the pion and kaon

masses and decay constants and the mass of the � baryon

on the 243 ensembles which have been extended beyond

those discussed in Ref. [1]. Section IV contains the corre-

sponding results on the 323 ensembles. In these two sec-

tions we also present the raw results for the masses of the

nucleon and � baryons from the two ensembles, but in

contrast to the mesonic quantities a description of their

chiral behavior and extrapolation to the continuum limit

are postponed to a future paper.

The pricewe pay for using a formulationwith good chiral

and flavor properties is the presence of the fifth dimension

and the corresponding increase in computational cost. The

lightest unitary pion which we have been able to afford to

simulate has a mass of 290 MeV and so, in addition to the

continuum extrapolation we need to perform the chiral

extrapolation in the quark masses. In Sec. V we present a

detailed explanation of how we combine the chiral and

continuum extrapolations in an attempt to optimize the

precision of the results, exploiting the Symanzik effective

theory approach as well as chiral perturbation theory and

other ansatze for the mass dependence of physical quanti-

ties. Having explained the procedure, we then proceed in

Sec. VE to discuss the results, to determine the physical

bare masses and lattice spacings as well as to make pre-

dictions for the pion and kaon decay constants. In particular

we find that the ratio of kaon and pion decay constants [13]

fK
f�

¼ 1:204� 0:026; (1)

where the error is largely due to the uncertainty in the chiral

behavior of f� as explained in Sec. VE 3. From the chiral

behavior of the masses and decay constants we determine

the corresponding low-energy constants (LECs) of SU(2)

chiral perturbation theory (ChPT).

Among the most important results of this paper are those

for the average u and d quark mass and for the strange-

quark mass which are obtained in Sec. VI:

mMS
ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV and

mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV: (2)

The masses are presented in theMS scheme at a renormal-

ization scale of 2 GeV, after the renormalization to

symmetric momentum schemes has been performed non-

perturbatively [14,15] and the conversion to the MS
scheme has been done using very recent two-loop results

[16,17].

Section VII contains a discussion of the topological

charge and susceptibility of both the 243 and 323 ensem-

bles and in Sec. VIII we summarize our main results and

present our conclusions. There are three appendices.

Appendix A contains the chiral extrapolations performed

separately on the 243 and 323 ensembles. This is in contrast

with the procedure described in Sec. VE in which the

chiral and continuum extrapolations were performed si-

multaneously with common fit parameters at the two spac-

ings. Appendix B contains a detailed analysis of a subtle

issue, the normalization of the partially conserved axial

current. For domain wall fermions this is expected to

deviate from the conventionally normalized continuum

current by terms of order amres, where a is the lattice

spacing and mres is the residual mass [1,18]. Current simu-

lations are now becoming sufficiently precise that these

effects need to be understood and quantified and the

method proposed in Appendix B, in which the OðamresÞ
effects are absent, is implemented in the numerical analy-

ses throughout the paper. Finally Appendix C contains a
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discussion of the expected statistical errors when reweight-

ing is performed on Monte Carlo data to obtain results with

a different action from that used to generate the data.

We end the Introduction with an explanation of our

notation for quark masses [1]. When discussing unitary

computations, with the valence and sea quarks degenerate,

we call the bare light (u or d) quark mass ml and the bare

heavy (strange) quark mass mh. mud and ms refer to the

physical values of these masses (we work in the isospin

limit so that the up and down quarks are degenerate). For

the partially quenched computations we retain the notation

ml and mh for the sea-quark masses, but use mx and my for

the valence quarks. A tilde over the mass indicates that the

residual mass has been added, ~mq ¼ mq þmres; it is ~m

which is multiplicatively renormalizable.

II. SIMULATION DETAILS AND

ENSEMBLE PROPERTIES

As described in Refs. [1,3,19], we generate ensembles

using a combination of the DWF formulation of Shamir

[20] and the Iwasaki gauge action [21]. For the fermionic

action we use a value of 1.8 for the ‘‘domain wall height’’

M5 and an extension of the 5th dimension of Ls ¼ 16. In
addition to the new ensembles generated on a 323 � 64
lattice volume and a gauge coupling � ¼ 2:25, we have

also significantly extended the 243 � 64, � ¼ 2:13 ensem-

bles generated in our previous study [1]. As indicated in

Table I we have extended the ml ¼ 0:005, 243 � 64 en-

semble from 4460 to 8980 molecular dynamics (MD) units

while the ml ¼ 0:01 ensemble has been extended from

5020 to 8540 MD units. The three 323 � 64 ensembles

that are first reported here are also shown in Table I and

those with light-quark masses of 0.004, 0.006 and 0.008

contain 6856, 7650 and 5930 MD units, respectively.

A. Ensemble generation

For the generation of both the 243 � 64 and 323 � 64
ensembles, we employ the ‘‘RHMC II’’ algorithm de-

scribed in Ref. [1]. More specifically, the simulation of

two light quarks and one strange quark is carried out using

a product of three separate strange-quark determinants

each evaluated using the rational approximation. The 2

flavors of light quarks are preconditioned by the strange-

quark determinant [22]. While the preconditioning mass

does not have to be the same as the strange-quark mass, we

found that the strange-quark mass is close to being optimal

in DWF simulations in tests on smaller volumes.

Using the notation DðmlÞ ¼ Dy
DWFðM5; mlÞDDWF�

ðM5; mlÞ, the fermion determinant including the contribu-

tion from the Pauli-Villars fields and evaluated on a

fixed gauge configuration can be written as

det

�
DðmsÞ1=2DðmlÞ

Dð1Þ3=2
�

¼ det

�
DðmsÞ
Dð1Þ

�
3=2

� det
�
DðmlÞ
DðmsÞ

�

(3)

¼ det

�

R1=2

�
DðmsÞ
Dð1Þ

��

� det
�

R1=2

�
DðmsÞ
Dð1Þ

��

� det
�

R1=2

�
DðmsÞ
Dð1Þ

��

� det
�
DðmlÞ
DðmsÞ

�

: (4)

In Eq. (4) we explicitly show how this ratio of determinants

is implemented using the rational approximation. Here

RaðxÞ denotes xa evaluated using the rational approxima-

tion and each determinant is evaluated using a separate set

of pseudofermion fields. An Omelyan integrator [23] with

the Omelyan parameter � ¼ 0:22 was used in each part of

evolution.

Given the disparate contributions to the molecular dy-

namics force coming from the gauge action and the differ-

ent factors in Eq. (4) we follow the strategy of Ref. [24] and

increase performance by simulating these different contri-

butions with different molecular dynamics time step gran-

ularities. In particular, the suppression of the force from the

light-quark determinant that results from the Hasenbusch

preconditioning allows us to evaluate the computationally

expensive force from the light quark using the largest time

step among the different terms, decreasing the computa-

tional cost significantly. As a result, we divide our simula-

tion in such a way that �tlight:�theavy:�tgauge ¼ 1:1:1=6

TABLE I. Simulation parameters as well as the average acceptance, plaquette (hPi), and value for the light-quark chiral condensate

[h �c c ðmlÞi] for the ensembles studied in this paper. The fifth column shows the number of time units in the ensembles that were

included from Ref. [1]. The residual masses given explicitly and those appearing in the ratio ~ml= ~ms are taken from Table VII appearing

in Sec. III below.

msa mla ~ms= ~ml �tlight � (Ref. [1]) � (MD) Acceptance hPi h �c c ðmlÞi
V=a ¼ 243 � 64, Ls ¼ 16, � ¼ 2:13, a�1 ¼ 1:73ð3Þ GeV, mresa ¼ 0:003 152ð43Þ, �=traj ¼ 1

0.04 0.005 5.3 1=6 4460 8980 73% 0.588 053(4) 0.001 224(2)

0.01 3.3 1=5 5020 8540 70% 0.588 009(5) 0.001 738(2)

V=a ¼ 323 � 64, Ls ¼ 16, � ¼ 2:25, a�1 ¼ 2:28ð3Þ GeV, mresa ¼ 0:000 666 4ð76Þ, �=traj ¼ 2
0.03 0.004 6.6 1=8 — 6856 72% 0.615 587(3) 0.000 673(1)

0.006 4.6 1=8 — 7650 76% 0.615 585(3) 0.000 872(1)

0.008 3.5 1=7 — 5930 73% 0.615 571(4) 0.001 066(1)
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which gave a good performance, measured in flops per

accepted trajectory in tuning runs performed separately.

(Note, the nature of the Omelyan integrator makes �theavy
effectively half of�tlight.) This ratio of time steps was used

for all the ensembles studied here. However �tlight was

varied from ensemble to ensemble to reach an approximate

acceptance of 70%. The precise numbers that were used

are listed in Table I.

In addition, we chose to simulate with a trajectory

length � ¼ 2 for the 323 ensembles, twice that used for

the 243 ensembles. While a longer trajectory length may

be expected to reduce the autocorrelation between con-

figurations, the time for a trajectory scales very nearly

linearly in the trajectory length. In comparisons between

� ¼ 1 and � ¼ 2 trajectory lengths we were not able to

recognize any statistically significant reduction in auto-

correlations, especially in those for the topological

charge, in terms of wall-clock time used to generate the

configurations.

A final optimization was used for the simulations run

on the IBM BG/P machines at the Argonne Leadership

Computing Facility (ALCF). Instead of using double

precision throughout, the BAGEL-generated assembly rou-

tines [25] keep the spin-projected spinors in single

precision in the conjugate gradient (CG) inverters during

the molecular dynamics evolution to decrease the

amount of communication needed per CG iteration.

(Full precision is used in the accept-reject step.) While

this kind of improvement is expected to make the mo-

lecular dynamics integrator unstable for sufficiently large

volumes, the effect on the acceptance turned out to be

minimal for all the ensembles presented in this paper

while improving the performance of the CG by up to

20% compared to a full double precision CG with the

same local volume.

B. Ensemble properties

In Fig. 1 we show the evolution of the plaquette and the

chiral condensate for the 323 ensembles. Both quantities

suggest that 500 MD units is enough for the thermalization

of each of the 323 ensembles. We have thus begun mea-

surements at 1000 MD units forml ¼ 0:006 (except for the
measurements of the chiral condensate which started after

3304 MD units) and 520 MD units for the other 323

ensembles. (The starting points for measurements on the

three 243 � 64 ensembles are given in Table I of Ref. [1].)

Figure 2 shows the integrated autocorrelation time for

various quantities measured on the 323 ensembles. As can

be seen the plaquette, chiral condensate and even the light

pion propagator for a separation of 20 time units show a

short autocorrelation time of 5–10 MD units. However, the

measured autocorrelation times for the topological charge

are much larger, on the order of 80 MD units. In fact, as is

discussed in Sec. VII, the evolutions shown in Fig. 52

suggest even longer autocorrelation times implying that

the autocorrelation times shown in Fig. 2 may be under-

estimated because of insufficient statistics.

In Sec. VII this issue of the autocorrelation time for the

topological charge is discussed in greater detail and the

� ¼ 2:13 and 2.25 evolutions are compared. The 323, � ¼
2:25 ensembles (with finer lattice spacing) are shown to

evolve topology more slowly. This suggests that the change

from the DBW2 gauge action used in earlier 2-flavor work

[26] to the Iwasaki gauge action used here may have been a

wise one. While the DBW2 gauge action gives smaller

residual DWF chiral symmetry breaking, it does this by

suppressing the tunneling which changes topological

charge. Thus, the use of the DBW2 gauge action may

have resulted in a topological charge evolution for our

current finest lattice spacings that would have been unac-

ceptably slow.
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FIG. 1. Evolution of the average plaquette (left panel) and the chiral condensate (right panel) for the � ¼ 2:25, 323 � 64, Ls ¼ 16
ensembles. The chiral condensate is normalized such that h �c c i � 1=m in the heavy-quark limit.
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C. Fitting procedure

In the analysis described in this paper it is important to

take into account the fact that the various quantities com-

puted on a single gauge configuration may be correlated.

To do this we apply the jackknife technique to simple

uncorrelated fits. While there is no proof, or even expec-

tation, that this is an optimal procedure, the jackknife will

provide a good estimate of the error except in the unlikely

event of large deviations of our result from a normal

distribution. While we could attempt to perform a ‘‘text-

book’’ correlated fit (again, using a jackknife procedure),

this would not be sensible: such fits assume that the data

should exactly follow the functional form used in the fit. In

the case of a fit to chiral perturbation theory or a simpler

analytic ansatz for the quark mass dependence of physical

quantities we know that this is not the case. While this

complaint applies to both correlated and uncorrelated fits,

for the highly correlated lattice data with which we are

dealing, small deviations (which in this procedure are

assumed to be statistical, but in our case are likely to be

systematic) are penalized by many orders of magnitude

more for the correlated than uncorrelated fits.

Nevertheless, we have performed correlated fits, where

the correlation matrix is obtained by taking increasing

numbers of the leading eigenvectors. Within our limited

ability to estimate the correlation matrix, we find no

significant difference in the results and errors with those

obtained using uncorrelated fits. Therefore, in this paper

(as was also the case in Ref. [1]) we present our main

results from the uncorrelated fits, but with a full jackknife

procedure for estimating the errors. However, it must be

borne in mind that for such uncorrelated fits the resulting

�2 may not be a reliable indicator of goodness of fit.

Therefore, we present a sample set of our fits graphically.

D. Reweighting in the mass of the sea strange quark

The sea strange-quark mass value used in our ensemble

generation,mðsimÞ
h , differs from the one in nature, which we

determine only after performing our final analysis. In this

subsection, we describe the reweighting method used to

correct this strange-quark mass from mðsimÞ
h to the target

mass mh. Various target heavy-quark masses are deter-

mined in Sec. V through interpolation/extrapolation to

yield meson masses which match either unphysical values

present in a different ensemble or which reproduce those

from experiment. Recently, several large-scale QCD simu-

lations have been reported using a reweighting technique

[27–29]. The various uses of this method include obtaining

sea-quark mass derivatives in Ref. [30], tuning the light

and strange-quark masses in Ref. [31], tuning the strange

and charm quark masses in Ref. [32] and going to larger Ls

for the DWF action in Ref. [33].

An observable, such as the meson propagator, at the

target strange sea-quark mass mh is obtained by measuring

that observable on the ensemble generated using mðsimÞ
h ,

multiplied by the reweighting factor w:

hOimh
¼

hOwi
mðsimÞ

h

hwi
mðsimÞ

h

: (5)

Here the reweighting factor w½U�� for a particular en-

semble of gauge links U� is the ratio of the square root

of the two-flavor Dirac determinant evaluated at the mass

mh divided by that same rooted determinant evaluated at

mðsimÞ
h ,

w½U�� ¼
detDðmhÞ1=2

detDðmðsimÞ
h Þ1=2

: (6)

This factor must be calculated for each configuration on

which measurements will be performed in the ensemble

generated using the sea strange mass mðsimÞ
h .

Among the many possible ways of computing the de-

terminant ratio in Eq. (6), we have chosen to use the

Hermitian matrix �ðmh; m
ðsimÞ
h Þ, whose determinant is

w½U��,

�ðmh; m
ðsimÞ
h Þ ¼ ½DðmðsimÞ

h Þy�1=2½DðmhÞy��1=2½DðmhÞ��1=2

� ½DðmðsimÞ
h Þ�1=2: (7)

0030020010

MD units

0

20

40

60

80

100

Plaquette

 Chiral condensate
 Pseudoscalar(t=20)

 Topological charge(m
l
=0.004)

 Topological charge(m
l
=0.006)

 Topological charge(m
l
=0.008)

FIG. 2 (color online). The integrated autocorrelation time is

shown for the average plaquette, chiral condensate h �c c i, pseu-
doscalar propagator at time separation 20 from a Gaussian

source, and point sink, all computed from the 323, ml ¼ 0:004
ensemble and the global topological charge for all three 323

ensembles. The chiral condensate and plaquette are measured

every two MD units and the averages within sequential blocks of

10 MD units have been analyzed. The topological charge is

measured every 4 MD units and the averages within sequential

blocks of 20 MD units have been analyzed. All other quantities

were measured every 20 MD units and no averaging has been

performed. Further discussion of the topological charge is given

in Sec. VII.
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The square root of these matrices is implemented using the

same rational polynomial approximation, R1=2ðxÞ, and

multishift conjugate gradient algorithm, which are used in

the ensemble generation. The order of the matrix products

in� assures that in the limit ofmh ! mðsimÞ
h ,� goes to the

unit matrix, so that the method described below for evaluat-

ing w has vanishing stochastic error in this limit.

To obtain w on each configuration, the determinant of�
is stochastically evaluated using a complex random

Gaussian vector � of dimension Ls � 12. Each complex

element is drawn from a random distribution centered

at zero with width 	� in both the real and imaginary

directions:

w ¼ hhe��y½��1=ð2	2
�
Þ��ii�

�
R
D�D�ye��y½��1=ð2	2

�
Þ��e��y�=ð2	2

�
Þ

R
D�D�ye��y�=ð2	2

�
Þ : (8)

We set 	2
� ¼ 1=2 and sample using N� Gaussian vectors

per configuration. For one sample, two multimass inver-

sions, one for mh and another for mðsimÞ
h , are performed.

One needs to be careful in evaluating Eq. (8) to avoid a

large and difficult to estimate statistical error. When the

eigenvalues of�, ��, are far from 1=ð2	2
�Þ, the large shift

in the width of the Gaussian in the integrand will cause

poor sampling in this stochastic evaluation of w, as can be

seen if Eq. (8) is rewritten with � diagonal:

w ¼
Y

��2spectð�Þ

Z

d���
y
�e

��y
�
½���1=ð2	2

�
Þ���e��y

�
��=ð2	2

�
Þ
�

Y

��2spectð�Þ

Z

d���
y
�e

��y
�
��=ð2	2

�
Þ: (9)

The first exponential function in the integrand (9) will be a

rapidly decreasing function of �y� when ½�� � 1=ð2	2
�Þ�

is large, with most of the Gaussian samples generated

according to the second exponential function in Eq. (9)

falling in a region where the first factor is very small. In

this sense, Eq. (8) may provide a statistically noisy esti-

mate of the ratio of the determinants in Eq. (6). The

fluctuations in this estimate will be rapidly reduced when

½�� � 1=ð2	2
�Þ� ! 0 or, for our choice of 	�, when �

becomes close to the unit matrix, � ! 1.
To reduce the stochastic noise in our estimate, det� is

divided into Nrw factors [28]

w¼det�¼
YNrw�1

i¼0

det�i¼
YNrw�1

i¼0

hhe��y
i ½�i�1=ð2	2

�
Þ��iii�i

: (10)

Each of �i needs to be close to the unit matrix while

keeping the determinant of the product the same as the

original determinant. Each factor det�i in the product is

evaluated using Eq. (8) with N� Gaussian vectors. We

note that all Gaussian vectors, �i, must be statistically

independent otherwise there will be unwanted correlation

among contribution from the Nrw steps. A similar decom-

position of the reweighting factor is also possible by using

the n-th root of the operators [33].

In this work, �i is chosen by uniformly dividing the

interval ½mh; m
ðsimÞ
h � into smaller pieces:

�i ¼ �ðmðiþ1Þ
h ; mðiÞ

h Þ; (11)

mðiÞ
h ¼mðsimÞ

h þ i
mh�mðsimÞ

h

Nrw

; ði¼0;1; . . . ;NrwÞ: (12)

In that way, reweighting factors for the intermediate

masses mðiÞ
h are also obtained, which will be used in our

analysis too.

For a given difference between the target and the simu-

lation masses, mh �mðsimÞ
h , Nrw needs to be sufficiently

large that �i is close to the unit matrix, suppressing the

statistical noise in estimating each of the determinants. We

have checked whether Nrw is large enough in our calcu-

lation of the reweighting factor. Figure 3 shows the loga-

rithm of the full reweighting factor, � lnðwÞ, as a function
of the number of divisions in strange-quark mass, Nrw, on

the � ¼ 2:13, 243 � 64, ml ¼ 0:005 lattices, the 2000th

trajectory in the left panel and the 4000th trajectory in the
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N
rw

220

225

230

235

240

245

250

- 
ln

( 
 w

 )

traj=2000

0 10 20 30 40

N
rw

traj=4000

FIG. 3. Logarithm of the reweighting factor, � lnðwÞ, as a

function of the number of divisions in the strange-quark mass,

Nrw on the � ¼ 2:13, 243 � 64, ml ¼ 0:005 lattices, the 2000th

trajectory on the left panel and the 4000th trajectory on the right

panel. The target and simulation quark masses are mh ¼ 0:035

and mðsimÞ
h ¼ 0:040. For Nrw ¼ 1, 5, 10, 20, 32, 40, the number

of Gaussian samples per mass steps is set to N� ¼ 40, 8, 4, 4, 2,
2, respectively. The error bars shown are the standard deviations

resulting from Nrw � N� samples for det�i. We interpret the

inconsistency between the values for Nrw ¼ 1, 5, and 10 and

those with larger Nrw in the left-hand panel as resulting from

insufficient statistics leading to underestimated errors for these

three cases where the stochastic sampling is very poor.
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right panel. The target and simulation quark masses are

mh ¼ 0:035 and mðsimÞ
h ¼ 0:040.

For Nrw 	 10, the reweighting factor w appears incon-

sistent with the results obtained for larger Nrm by a large

amount [note that � lnðwÞ is plotted] for the left case

(2000th trajectory). We believe this is caused by the poor

stochastic sampling in our method to compute w when

Nrw 	 10 and that for these cases the statistics are insuffi-

cient to estimate the error accurately.

We also check the relative difference between the re-

weighting factors for Nrw ¼ 20 and Nrw ¼ 40 in Fig. 4 for
five lattices. This plot indicates that Nrw ¼ 20 is sufficient

to estimate the reweighting factor and its error for changing

from mðsimÞ
h ¼ 0:040 to mh ¼ 0:035 on this ensemble. We

summarize the values of Nrw and N� used in estimating the

reweighting factors for the sea strange-quark mass in

Table II.

Is the Nrw dependence, described above, all one needs to

check to assure the correctness of the reweighting proce-

dure? The answer is clearly no. So far, we have only

established that Eq. (10) estimates w to some degree of

accuracy, on each configuration for large Nrw. One needs

further checks to see whether or not the reweighted ob-

servable in Eq. (5) has an accurately estimated statistical

error. A highly inaccurate estimate of the statistical errors

could easily result from a poor overlap between the re-

weighted ensemble and the original ensemble generated by

the RHMC simulation. In addition, because the reweighted

observable in Eq. (5) is given by a ratio of averages it is a

biased estimator of the observable of interest. In this cir-

cumstance, a large statistical error, even if well determined,

may lead to a systematic error of order 1=Nconf enhanced

by this large statistical error.

We have attempted the following checks: In Fig. 5, w is

plotted as a function of trajectory. If the fluctuation among

different configurations is large, Eq. (5) might be domi-

nated by a small number of measurements made on those

configurations with large w, and the measurement effi-

ciency for the reweighted observable would be very poor.

Using the reweighting factor, wi, obtained on the i-th
configuration, the reweighted observable O can be written

from Eq. (5) as

hOims
¼

XNconf

i¼1

Oiŵi; (13)

ŵ i ¼
wi

PNconf

i¼1 wi

: (14)

Because the process of reweighing selectively samples

the original distribution, even with precisely determined

reweighting factors we should expect the effective number

of samples to be reduced and the statistical errors to in-

crease. In Appendix C this effect is analyzed in the case that

correlations between the data and the reweighting factors

can be neglected when estimating these statistical errors,

including the effects of autocorrelations. For the case of no

autocorrelations, we obtain the following expression for

the effective number of configurations after reweighting:

Neff ¼
ðPNconf

n¼1 wnÞ2
PNconf

n¼1 w
2
n

: (15)

The quantity Neff goes to Nconf if there is no fluctuation in

the wi while it goes to 1 if the largest wi completely
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FIG. 4. The relative differences between the reweighting fac-

tors for Nrw ¼ 20, N� ¼ 4 and Nrw ¼ 40, N� ¼ 2 on five

lattices. The target and simulation quark masses are mh ¼
0:035 and mðsimÞ

h ¼ 0:040.

TABLE II. Parameters chosen for the sea strange-quark mass

reweighting calculation are shown.

Ensemble mðsimÞ
h mh Nrw N�

323 � 64 0.030 0.025 10 4

243 � 64 0.040 0.030 40 2

0
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w
norm

 at m
h
=0.0345 from 0.040

m
l
=0.005, 0.010
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=0.0275 from 0.030
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FIG. 5. The normalized reweighting factor ŵi as a function of

trajectory number i for the 243 � 64, ml ¼ 0:005, 0.010 ensem-

bles (left-hand plot) and the 323 � 64, ml ¼ 0:004, 0.006, 0.008
ensembles (right-hand plot). The sea-quark masses ml are plot-

ted in ascending order from top to bottom. The target sea

strange-quark mass and that of simulation are mh ¼ 0:0345,

mðsimÞ
h ¼ 0:040 (mh ¼ 0:0275, mðsimÞ

h ¼ 0:030) for the left-hand

(right-hand) plot.
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dominates the reweighted ensemble. We summarize the

statistical features of the reweighting factors for each en-

semble in Table III. For completeness we also compare the

definition of Neff given in Eq. (15) with the more pessimis-

tic estimate used in Ref. [34]:

N

eff ¼

PNconf

i¼1 wi

maxjðwjÞ
: (16)

As can be seen from Table III, our choice gives a somewhat

more optimistic view of the effects of reweighting on the

effective size of our ensembles.

As the numbers in Table III indicate, for our ensemble

and reweighting settings, the ensembles are not over-

whelmed by a small number of configurations.

The efficiency of the reweighting procedure is also

observable dependent. It is influenced by the fluctuations

of the reweighted observable within the ensemble and the

strength of the correlation between the reweighted observ-

able and the reweighting factor. Sanity checks of the

statistical properties of the most important observables,

m� and f�, have been performed and are summarized in

Fig. 6. The observables reweighted to mh ¼ 0:0250 from

mðsimÞ
h ¼ 0:030 are calculated using the first half and the

second half of the ensemble (circle symbols), which are

compared to that of the full statistics (square symbols). The

number of the Gaussian vectors, N�, is also varied from

N� ¼ 1 (first 12 points from left to right in each panel

denoted by blue symbols) toN� ¼ 2 (next 6 points denoted
by green symbols) to N� ¼ 4 (next 3 points denoted by red
symbols) in the same plot. The rightmost (black) 3 points

are the unweighted observables. In the case of m�, all the

statistical samples are within 1� 	, while for f� the

deviations are less than �2� 	.
To probe the mh dependence of the observables, we

show in Fig. 7 the correctly reweighted m� and f� as a

function of mh along with the results obtained from ran-

domly permuting the fwig in Eq. (13). The random permu-

tation is done for each reweighted mass mh to show the

difference from the correctly reweighted observables.

While the randomly reweighted observables are almost

flat in mh, the correctly reweighted observables have a

positive slope in mh. Finally in Fig. 8 we plot the re-

weighted observables f� and fK as a function of the target

reweighted mass mh for three example parameter points.

Note that in both Figs. 7 and 8 we observe an increase in

statistical errors which appears roughly consistent with

what should be expected from the decrease in
ffiffiffiffiffiffiffiffi
Neff

p
. We

should emphasize that further careful studies may be

needed to establish a more accurate estimate of possible

errors in the reweighting procedure.

TABLE III. The maximum and minimum reweighting factors,

the effective number of samples, Neff , according to the formula

derived in this paper, [Eq. (15)], the corresponding number, N

eff

given by the formula of Ref. [34] [defined in Eq. (16)] and the

actual number of configurations Nconf in each ensemble. The

target sea strange-quark mass and that of the simulation are

mh ¼ 0:0345, mðsimÞ
h ¼ 0:040 (mh ¼ 0:0275, mðsimÞ

h ¼ 0:030) for
243 � 64 (323 � 64).

Ensemble maxðwiÞ minðwiÞ NEff N

Eff Nconf

243 � 64, ml ¼ 0:005 10.0 0.078 90.3 20.3 203

243 � 64, ml ¼ 0:010 5.50 0.049 97.0 32.4 178

323 � 64, ml ¼ 0:004 4.77 0.17 228 63.9 305

323 � 64, ml ¼ 0:006 3.45 0.23 234 90.4 312

323 � 64, ml ¼ 0:008 5.36 0.16 183 47.0 252
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FIG. 6 (color online). Reweighted values for m� (left) and f�(right) for various numbers of reweighting hits, N� ¼ 1 (leftmost 12

points in each panel denoted by blue symbols), N� ¼ 2 (next 6 points denoted in green), N� ¼ 4 (next 3 points denoted in red), on each

ensemble. The squares are for the full data set (300 configurations) and the circles are for the first and second half of the data (150

configurations.) The data is from the 323 � 64� 16; ðml; mhÞ ¼ ð0:004; 0:03Þ ensemble with a light valence quark of mass 0.004. The

rightmost 3 (black) points are the unreweighted observables.
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III. UPDATED RESULTS FROM

THE 243 ENSEMBLES

In this section we update the results presented on the 243

ensembles in [1] to the extended data set described in

Sec. II, and in Table I in particular. For this extended

data set we make measurements of pseudoscalar quantities

on a total of 203 configurations for the ml ¼ 0:005 en-

semble and 178 configurations for the ml ¼ 0:01 en-

semble. These configurations were separated by 40

trajectories as documented in the first two rows of

Table IV. In our previous work we used 92 of these mea-

surements on each ensemble [1,4]. Before performing the

analyses we binned the data into blocks of either 80 or 400

trajectories and the measurements from each bin were then

treated as being statistically independent. No statistically

significant increase in the error was observed with the

analysis using bins of 400 trajectories compared to that

with bins of 80 trajectories.

In the following sections the results from the 243 lattices,
combined with those obtained on the 323 ensembles, will

be input into global chiral and continuum fits in order to

determine physical quantities; here we simply tabulate the

fitted pseudoscalar masses and decay constants as obtained

directly from the correlation functions at our simulated

quark masses. In addition, since we use the mass of the

� baryon in the definition of the scaling trajectory, we also

present the results formhhh here together with those for the
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FIG. 7 (color online). The left figure gives m� with correct reweighting factors (blue squares) and with randomly permuted

reweighting factors (green diamonds). The right figure is the same but for f�.
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FIG. 8 (color online). Reweighted results for f� (left) and fK (right) as functions of mh at three parameter sets ð�;mlÞ: green
diamonds: (2.25, 0.008), red circles: (2.13, 0.005), blue squares: (2.25, 0.004).
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Sommer scale r0 and also the scale r1. Finally, we give the
results for the masses of the nucleons and � baryons from

the 243 ensembles, although the chiral and scaling behavior

of these masses will not be studied in this paper. We present

these baryon masses partly for completeness and partly to

share our experience in the use of different sources.

On the 243 lattices discussed in this section, the mea-

surements are presented for the two values of the sea light-

quark mass, ml ¼ 0:005 and 0.01, and for the full range of

valence-quark masses mx;y ¼ 0:001, 0.005, 0.01, 0.02,

0.03, and 0.04. The ensembles with ml ¼ 0:02 and 0.03,

presented in [1], are not included in this paper because such

values of ml were found to be too large for SU(2) chiral

perturbation theory to describe our data. The value of the

sea strange-quark mass in these simulations is mh ¼ 0:04.
After completing the global chiral and continuum fits

described in Sec. V below, we find that the physical value

of the bare strange-quark mass, obtained using the chiral

perturbation theory ansatz, is ms ¼ 0:0348ð11Þ. In this

section we anticipate this result and use reweighting to

obtain results also at this value of the strange-quark mass.

For the 243 ensembles, we placed Coulomb gauge-fixed

wall sources at t ¼ 5 and at t ¼ 57. From each source, we

calculated two quark propagators, one with periodic and

the other with antiperiodic boundary conditions. From the

periodic propagators for the two sources, denoted by D�1
P;5

andD�1
P;57, and the antiperiodic propagators, written asD

�1
A;5

and D�1
A;57, we form the combinations

D�1
PþA;5 ¼ 1

2ðD�1
P;5 þD�1

A;5Þ and

D�1
PþA;57 ¼ 1

2ðD�1
P;57 þD�1

A;57Þ: (17)

The use of periodic plus antiperiodic boundary conditions

in the time direction doubles the length of the lattice in

time, which markedly reduces the contamination from

around-the-world propagation in the time direction. For

two-point functions, such as the propagator of a pseudo-

scalar meson given by

h�ðtÞ�ð0Þi ¼
X

~x

Trf½D�1
PþA;5ðt; ~xÞ�yD�1

PþA;5ðt; ~xÞg; (18)

on a lattice of time extent Nt the time dependence of the

contribution of the ground state is given by

h�ðtÞ�ð0Þi ¼ A½expð�m�ðt� 5ÞÞ
þ expð�m�ð2Nt � ðt� 5ÞÞ�: (19)

Here A is a t-independent constant. For our 243 ensembles,

we find that around-the-world propagation is not visible in

two-point functions. This is not the case, however, for

three-point functions, as we now explain (although we do

not analyze three-point functions in this paper, they are

being evaluated in the computation of BK, for example

[35]).

For three-point functions of the form hPðxÞOðyÞPðzÞi,
where PðxÞ and PðzÞ are pseudoscalar interpolating fields

and OðyÞ is an operator whose matrix element we wish to

measure, we use the wall source at t ¼ 5 as the source for

PðzÞ and the wall source at t ¼ 57 as the source for PðxÞ.
We only consider y0 in the range 5 	 y0 	 57, so we do

not perform any measurements in the doubled lattice. The

doubling of the lattice is important to reject around-the-

world propagation in time for such measurements. For

kaons, we found that a time separation of 52 between the

sources gave us a broad plateau, with sufficiently small

errors. This measurement strategy was chosen to optimize

the measurement of the kaon bag parameter [4,35].

Before presenting our results for masses, decay con-

stants and r0 and r1, we discuss the values of the residual

mass and the renormalization constant of the local axial

current. The residual mass m0
resðmfÞ at each partially

quenched valence mass used in this work is measured using

the ratio [36]

m0
resðmfÞ ¼

h0jJa5qj�i
h0jJa5 j�i

; (20)

where Ja5q is the usual DWF midpoint pseudoscalar density

composed of fields of each chirality straddling the mid-

point in the fifth dimension, and Ja5 is the physical pseu-

doscalar density at the surfaces of the fifth dimension

composed of surface fields in the fifth dimension. The

results are given in Table V. For completeness we also

present the corresponding residual masses obtained after

reweighting to the physical strange mass in Table VI. The

residual mass in the two-flavor chiral limit mres ¼
m0

resðmx ¼ ml ¼ 0Þ is given in Table VII and in the left-

hand plot of Fig. 9.

We define ZA to be the renormalization constant of the

local axial current, A�, composed of the physical surface

TABLE IV. A summary of the five ensembles used in this work are shown.

Volume ðml; mhÞ Total MD time Measurement range Measurement total

243 (0.005, 0.04) 0-8980 900–8980 every 40 203

243 (0.01, 0.04) 1455-8540 1460–8540 every 40 178

323 (0.004, 0.03) 0-6756 520–6600 every 20 305

323 (0.006, 0.03) 0-7220 1000–7220 every 20 312

323 (0.008, 0.03) 0-5930 520–5540 every 20 252
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fields. Here we have determined ZA through two methods.

In the first, ZA is determined for each valence mass using

the improved ratio [37] of the matrix element hA4ðtÞPð0Þi

to hA4ðtÞPð0Þi, where A� is the conserved DWF axial

current and the results are presented in Table VIII. This

method assumes ZA ¼ 1, and we find ZA ¼ 0:716 51ð46Þ
in the two-flavor chiral limit with the simulated sea strange

mass, and ZA ¼ 0:716 89ð51Þ when reweighted to the

nearby physical strange mass. This determination of ZA

is illustrated in the plots of Fig. 10. As pointed out in [1],

we expect ZA ¼ 1þOðamresÞ, and in [1] we added a

�1% error to account for the size of this correction. As

part of our current work, we have investigated the con-

sequences of this correction, which is discussed in detail in

Appendix B. From this analysis, we find ZA ¼ 0:7041ð34Þ,
a 1.8% difference from the result with our previous

method. Although, as we will see, this error is smaller

than our current combined errors on the decay constants

and other physical quantities, we choose to use this value

of ZA ¼ 0:7019ð26Þ, coming from ZV=ZV as defined in

Eq. (B19), as the normalization factor for the local axial

current when quoting all our central values below. Here V
and V are the local and conserved vector currents.

We now turn to the measurements of the meson masses

and decay constants. In order to illustrate the quality of the

fits, we start by presenting some sample plots for the

unitary pion and kaon on the ml ¼ 0:005, mh ¼ 0:04
ensemble. The pion effective masses obtained using differ-

ent sources and sinks are shown in Fig. 11. The mass and

decay constant is obtained from a simultaneous fit with a

single, constrained mass to five correlation functions.

These are the hPjPi, hAjAi, and hAjPi correlation functions

TABLE V. m0
resðmxÞ measured on the 243 ensembles at the

simulated strange-quark mass mh ¼ 0:04 is shown.

mx ml

0.005 0.01

0.001 0.003 194(16) 0.003 286(28)

0.005 0.003 154(15) 0.003 259(26)

0.01 0.003 079(14) 0.003 187(24)

0.02 0.002 939(12) 0.003 042(21)

0.03 0.002 822(12) 0.002 919(19)

0.04 0.002 725(11) 0.002 818(17)

TABLE VI. m0
resðmxÞ on the 243 ensembles at the physical

strange-quark mass is shown.

mx ml

0.005 0.01

0.001 0.003 146(27) 0.003 224(33)

0.005 0.003 099(27) 0.003 191(32)

0.01 0.003 025(26) 0.003 120(31)

0.02 0.002 889(24) 0.002 981(26)

0.03 0.002 774(23) 0.002 863(23)

0.04 0.002 680(21) 0.002 765(21)

TABLE VII. mres in the two-flavor chiral limit on the 243 and
323 ensembles at the simulated and physical strange sea-quark

masses are shown.

mh m243
res m323

res

msim
h 0.003 152(43) 0.000 666 4(76)

m
phys
h 0.003 076(58) 0.000 664 3(82)
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FIG. 9 (color online). Chiral extrapolation of the unitary values of m0
res for the 24

3 (left) and 323 (right) ensembles. While the fit is

only marginally acceptable for the 323 lattices, an additional uncertainty of Oð5� 10�6Þ is negligible.

TABLE VIII. ZA on the 243 ensembles at the simulated and

physical strange sea-quark masses are shown.

mh ZA (chiral) ZAðml ¼ 0:005Þ ZAðml ¼ 0:01Þ
msim

h ¼ 0:04 0.71651(46) 0.71732(14) 0.71783(15)

m
phys
h 0.71689(51) 0.71746(17) 0.71781(17)
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(denoted in the figure by PP, AA, and AP, respectively)

with gauge-fixed wall sources and local (LW) or wall

(WW) sinks (we do not use the AA-WW combination

because it is noisier). The long time extent Nt ¼ 64 on

our lattices together with the noise properties of pseudo-

scalar states allow for long plateaux and the results are

insensitive to the choice of tmin, the starting point of the fits.

Figure 12 displays the effective masses for the unitary

kaon, together with the results obtained from a simulta-

neous constrained fit. We give an example of the mh

dependence of the unitary pion and kaon masses in

Fig. 13. This dependence is obtained by reweighting.

We normalize the states so that, for periodic boundary

conditions, the time-dependence of the correlators for large

times is given by

C
s1s2
O1O2

ðtÞ¼h0jOs1
1 j�ih�jOs2

2 j0i
2mxyV

½e�mxyt�e�mxyð2Nt�tÞ�; (21)

where the superscripts specify the type of smearing and the

subscripts denote the interpolating operators. The sign in

the square brackets in Eq. (21) is þ for PP and AA
correlators and � for AP ones. We therefore define the

amplitude of the correlator to be

N
s1s2
O1O2

� h0jOs1
1 j�ih�jOs2

2 j0i
2mxyV

: (22)

For each correlator included in the simultaneous fit

N LW
AA ;N

LW
PP ;N

LW
AP ;N

WW
PP ; and N WW

AP ;

we determine the amplitude and obtain the decay constant

fxy using

fxy ¼ ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

mxy

N LW2
AP

N WW
PP

v
u
u
t : (23)

Table IX contains the measured pseudoscalar masses

and decay constants at the simulated strange-quark mass

mh ¼ 0:04. After reweighting to the estimated physical

strange-quark mass ms ¼ 0:0348ð11Þ the masses and de-

cay constants of the pions are presented in Table X and

those for the kaons in Table XI.

The � baryon, being one of the quantities included in

the definition of our scaling trajectory (see Sec. V),

plays an important rôle in our analysis. We have per-

formed measurements on the same configurations using

a gauge-fixed box source of size 16 lattice units that

gives a good plateau for the � state for valence-quark

masses mx ¼ 0:04 and mx ¼ 0:03 to enable interpolation

to the physical strange-quark mass. We display the fit to

the mx ¼ 0:04 � baryon mass on the ml ¼ 0:005, mh ¼
0:04 ensemble in Fig. 14, along with the dependence

of this mass on the dynamical strange mass using

reweighting.

The results for the�mass,mhhh, obtained directly at the

simulated strange-quark mass (mh ¼ 0:04) with valence

strange-quark masses my ¼ 0:04 and 0.03 are presented in

Table XII. In this table we also present the results for mhhh

obtained after reweighting to the physical strange-quark

mass. In Table XIII we display the values of the Sommer

scale r0, r1 and their ratio at both the simulated and

physical strange-quark masses. These quantities were de-

termined using Wilson loops formed from products of

temporal gauge links with Coulomb gauge-fixed closures

in spatial directions, with an exponential fit to the time

dependence of the Wilson loopWðr; tÞ from t ¼ 3 to t ¼ 7
for each value of the separation r. The resulting potential

VðrÞ was then fit over the range r ¼ 2:45� 8 to the

Cornell form [38]

VðrÞ ¼ V0 �



r
þ 	r; (24)
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where V0, 
, and 	 are constants. These fits are illus-

trated in Fig. 15, which shows the fit to the time depen-

dence of the Wilson loop Wðr ¼ 2:45; tÞ at the physical

strange-quark mass, and also the subsequent fit over the

potential. The strange-quark mass dependence of the

scales r0 and r1 is small and cannot be resolved within

our statistics.

Nucleon and � masses

A detailed study of the baryon mass spectrum, includ-

ing the continuum and chiral extrapolations, is postponed

to a separate paper. The one exception is the � baryon,

whose mass is used in the definition of the scaling trajec-

tory and which is therefore studied in detail together with

the properties of pseudoscalar mesons. In this subsection
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horizontal bands represent the result for the mass from a simultaneous fit.
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we briefly discuss our experiences in extracting the

masses of the nucleons and � baryons using different

sources and present the results for these masses on each

ensemble, starting here with those from the 243 ensem-

bles. The baryon spectrum from the 323 ensembles will be

discussed below. We start however, with some general

comments about our procedures which are relevant to

both sets of ensembles.

We use the standard operator, N ¼ �abcðuTaC�5dbÞuc,
to create and annihilate nucleon states and � ¼
�abcðuTaC��ubÞuc for the flavor decuplet � states. On an

antiperiodic lattice of size Nt in the time direction, the
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FIG. 12 (color online). Effective kaon masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator

(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The

horizontal bands represent the result for the mass from a simultaneous fit.
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zero-momentum two-point correlation function, CðtÞ, cal-
culated with one of these baryonic operators at its source

and sink, takes the following asymptotic form for suffi-

ciently large time, t:

CðtÞ ¼ Z½ð1þ �4Þe�Mt � ð1� �4Þe�MðNt�tÞ�; (25)

corresponding to particle and antiparticle propagation, re-

spectively. Conventionally one chooses an appropriate

range in time where the excited-state contributions can

be neglected so that this form is valid, and extracts the

ground-state mass, M, by fitting the numerical data to the

function in Eq. (25). This is indeed what we do to extract

baryon masses from the 243 ensembles. Alternatively we

can try to fit the correlation function to a sum of two

exponentials, representing the ground- and excited-state

contributions. As will be reported below, this is the method

we use for the 323 ensembles.

The determination of baryon masses can be made more

effective by an appropriate choice of smearing at the

source and/or sink. We use several different choices of

the smearing of these operators, wall, box, and gauge-

invariant Gaussian [39,40], in an attempt to obtain a better

overlap with the ground state; our choices are summarized
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FIG. 13 (color online). We illustrate the mh dependence of the unitary pion (left panel) and kaon (right panel) masses on the

ml ¼ 0:005, 243 ensemble. The values are obtained by reweighting around the simulated value (mh ¼ 0:04).

TABLE IX. Pseudoscalar masses mxyðmlÞ and decay constants

fxyðmlÞ on the 243 ensembles at the simulated strange-quark

mass (mh ¼ 0:04) are shown.

mx my mxyð0:005Þ mxyð0:01Þ fxyð0:005Þ fxyð0:01Þ
0.04 0.04 0.4317(4) 0.4344(4) 0.1063(6) 0.1087(6)

0.03 0.04 0.4051(4) 0.4080(4) 0.1034(6) 0.1059(6)

0.02 0.04 0.3772(5) 0.3802(4) 0.1002(5) 0.1028(5)

0.01 0.04 0.3478(5) 0.3509(5) 0.0967(5) 0.0996(6)

0.005 0.04 0.3325(6) 0.3358(5) 0.0949(5) 0.0982(6)

0.001 0.04 0.3199(7) 0.3233(7) 0.0937(6) 0.0975(7)

0.03 0.03 0.3771(4) 0.3800(4) 0.1006(5) 0.1031(5)

0.02 0.03 0.3472(5) 0.3502(4) 0.0974(5) 0.1001(5)

0.01 0.03 0.3152(5) 0.3184(4) 0.0939(5) 0.0969(5)

0.005 0.03 0.2983(5) 0.3016(5) 0.0920(5) 0.0954(6)

0.001 0.03 0.2843(6) 0.2877(6) 0.0908(6) 0.0946(6)

0.02 0.02 0.3149(5) 0.3179(4) 0.0943(5) 0.0971(5)

0.01 0.02 0.2794(5) 0.2826(5) 0.0908(5) 0.0938(5)

0.005 0.02 0.2603(5) 0.2636(5) 0.0889(5) 0.0923(5)

0.001 0.02 0.2440(6) 0.2475(6) 0.0876(5) 0.0915(6)

0.01 0.01 0.2389(5) 0.2422(5) 0.0872(5) 0.0905(5)

0.005 0.01 0.2161(5) 0.2195(5) 0.0853(5) 0.0889(5)

0.001 0.01 0.1960(6) 0.1997(6) 0.0840(5) 0.0879(5)

0.005 0.005 0.1904(6) 0.1940(6) 0.0834(5) 0.0871(5)

0.001 0.005 0.1669(6) 0.1709(6) 0.0819(5) 0.0858(5)

0.001 0.001 0.1391(6) 0.1434(7) 0.0802(5) 0.0840(5)

TABLE X. Pion masses mxyðmlÞ and decay constants fxyðmlÞ
on the 243 ensembles at the physical strange-quark mass ms ¼
0:0348ð11Þ are shown.

mx my mxyð0:005Þ mxyð0:01Þ fxyð0:005Þ fxyð0:01Þ
0.01 0.01 0.2378(8) 0.2420(7) 0.0867(5) 0.0900(6)

0.005 0.01 0.2149(9) 0.2192(7) 0.0848(6) 0.0882(6)

0.001 0.01 0.1948(10) 0.1994(8) 0.0833(6) 0.0871(6)

0.005 0.005 0.1891(10) 0.1936(8) 0.0828(5) 0.0863(6)

0.001 0.005 0.1656(11) 0.1704(8) 0.0813(6) 0.0850(6)

0.001 0.001 0.1377(12) 0.1427(9) 0.0796(6) 0.0832(7)

TABLE XI. Kaon massesmxhðmlÞ and decay constants fxhðmlÞ
on the 243 ensembles at the physical strange-quark mass ms ¼
0:0348ð11Þ are shown.

mx mxhð0:005Þ mxhð0:01Þ fxhð0:005Þ fxhð0:01Þ
0.01 0.330(4) 0.334(4) 0.0947(7) 0.0978(8)

0.005 0.314(4) 0.318(4) 0.0928(7) 0.0963(9)

0.001 0.301(4) 0.305(4) 0.0915(8) 0.0955(10)
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in Table XIV. The wall source, used for the 323 ensembles,

is Coulomb-gauge fixed. A box source of size 16, also

Coulomb-gauge fixed, is used for the 243 ensembles. The

Gaussian-source radius is set to 7 lattice units and 100

smearing steps are used for the 243 ensembles, while the

radius is 6 in the 323 ensembles: these choices are opti-

mized for our nucleon-structure calculations [7–9].

As can also be seen from the table, several steps are

taken to reduce the statistical error. For each configuration,

as many as four different time slices are used for the

sources, usually separated by 16 lattice units, but occasion-

ally fewer. Measurements are made as frequently as every

tenth trajectory and are averaged into bins of 40 hybrid

Monte Carlo time units.

We now turn to the results obtained specifically on the

243 ensembles. The unitary nucleon and� effective masses

are plotted in Figs. 16 and 17 for each choice of quark mass.

For the nucleon, both Gaussian and box sources are shown.

Plateaus for the effective masses obtained with the box

source appear quickly, suggesting a strong overlap with the

ground state. The corresponding plateaus obtained with the

Gaussian source appear more slowly, from above. Both sets

of results agree reasonably well for sufficiently large t. For
the � the correlators were only computed using the box

source and the plateaus for the effective masses again

appear quickly. The results for the masses, obtained using

fully correlated fits, are summarized in Table XV. Note

such fully correlated fits work well for extracting baryon

masses as the procedure involves much shorter ranges in

time than for the meson observables discussed in the rest of

this paper. As expected from the effective mass plots,

nucleon masses obtained using different sources agree

fairly well when the fits are performed over appropriate

ranges. All values of�2 per degree of freedom (�2=dof) are
close to 1 or smaller, except for the box-source nucleon fit

at mf ¼ 0:02 which is about 2.5.

Some of these results have been reported earlier at

Lattice 2008 [41], and also partially in related papers on

nucleon structure [8,9]. A preliminary report on a bootstrap

correlated analysis with a frozen correlation matrix was

presented at Lattice 2009 [42] and the results agree with

the updated ones given here.

IV. RESULTS FROM THE 323 ENSEMBLES

The results for masses, decay constants, r0 and r1 ob-

tained directly on the 323 lattice are presented in the same

format as those from the 243 ensembles in Sec. III and the

available measurements are also summarized in Table IV.

The results are presented for three values of the sea light-

quark mass ml ¼ 0:004, 0.006, and 0.008 which corre-

spond to unitary pion masses in the range 290 MeV–

400 MeV which we had found to be consistent with
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FIG. 14 (color online). Fit to the� baryon mass with valence strange mass mx ¼ 0:04 on the ml ¼ 0:005, mh ¼ 0:04, 243 ensemble

showing the quality of the fit with our box source (left panel). We also show the weak dependence of the � baryon mass with fixed

valence mass mx ¼ 0:04 on our simulated mh inferred by the reweighting procedure on the ml ¼ 0:005, 243 ensemble (right panel).

TABLE XII. Omega baryon masses on the 243 ensembles at

the simulated strange-quark massmh ¼ 0:04 (first two rows) and
at the physical strange-quark mass (third row) are shown.

my mh m�ð0:005Þ m�ð0:01Þ
0.04 0.04 1.013(3) 1.028(4)

0.03 0.04 0.963(4) 0.978(4)

0.0348 0.0348 0.988(9) 1.001(7)

TABLE XIII. The quantities r0, r1, and r1=r0 at the simulated

(mh ¼ 0:04) and physical (mh ¼ 0:0348) strange-quark masses

on the 243 ensembles. QðmlÞ denotes the quantity measured with

light-quark mass ml.

Quantity mh ¼ 0:04 mh ¼ 0:0348
Qð0:005Þ Qð0:01Þ Qð0:005Þ Qð0:01Þ

r0 4.16(2) 4.10(2) 4.15(2) 4.12(3)

r1 2.82(3) 2.70(2) 2.83(3) 2.72(3)

r1=r0 0.678(8) 0.657(6) 0.682(9) 0.661(10)
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SU(2) chiral perturbation theory on the 243 lattice [1]. The
valence-quark masses used in the analysis are mx;y ¼
0:002, 0.004, 0.006, 0.008, 0.025, and 0.03. For pseudosca-
lar quantities we use 305, 312, and 252 measurements

separated by 20 trajectories on the 0.004, 0.006, and

0.008 ensembles, respectively, (see Table IV). For the 323

lattices, we have used a single-source technique for our

measurements of pseudoscalar quantities, which differs

from the two-source method for the 243 ensembles.

Recall that for the 243 ensembles, as discussed in

Sec. III, we placed Coulomb gauge-fixed wall sources at

t ¼ 5 and at t ¼ 57. For the 323 ensembles we have used a

single source and calculated both periodic and antiperiodic

propagators from this one source. The source is placed at

t ¼ 0 on the first configuration used for measurements, and

the position of the source is then increased by 16 for every

subsequent measurement so that tsrc ¼ 16n mod 64 where

n is the measurement index, which starts from zero.

Moving the source in this way helps to decorrelate mea-

surements. We always place the antiperiodic boundary

condition on the links in the time direction going from

the hyperplane with t ¼ tsrc � 1 to t ¼ tsrc. Clearly the

number of propagators to calculate for the single-source

method is half that for the two-source method.

For meson two-point functions, as given in Eq. (18), the

single-source method is identical to the two-source

method, except for having half the number of measure-

ments per configuration. For the light-quark masses on our

323 ensembles we do see around-the-world effects at the

fraction of a percent level, so fits of the form in Eq. (19)

must be used. We also perform measurements using three-

point functions of the type hPðxÞOðyÞPðzÞi, where PðxÞ and
PðzÞ are pseudoscalar interpolating fields and OðyÞ is an

operator whose matrix element we wish to measure. Here
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FIG. 15 (color online). The effective potential of the Wilson loops with a spatial extent of r ¼ 2:45 on the 243,ml ¼ 0:005 ensemble

at the physical strange-quark mass, overlaid by the fit to the range t ¼ 3–7 (left panel). The right panel shows the static interquark

potential VðrÞ on this ensemble, again at the physical strange-quark mass, as a function of the spatial extent of the Wilson loops,

overlaid by the fit to the Cornell form over the range r ¼ 2:45–8.

TABLE XIV. A summary of the configurations used in the calculation of the baryon spectrum

is shown.

Size ml Source type Correlators Source time slices Configurations

243 0.005 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 647

0.005 Box �, � 0, 32 90

0.01 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 357

0.01 Box �, � 0, 32 90

0.02 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 99

0.02 Box �, � 0, 32 43

0.03 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 106

0.03 Box �, � 0, 32 44

323 0.004 Gaussian N, � 10, 26, 42, 58 264

0.004 Wall N, � 0, 16, 32, 48 305

0.006 Wall N, � 0, 16, 32, 48 224

0.008 Gaussian N, � 10, 26, 42, 58 169

0.008 Wall N, � 0, 16, 32, 48 254
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PðxÞ is made out of propagators of the form D�1
PþA;0 ¼

1=2ðD�1
P;0 þD�1

A;0Þ in the notation of Eq. (17) and PðzÞ is
composed of D�1

P�A;0 ¼ 1=2ðD�1
P;0 �D�1

A;0Þ propagators.

This means that the time separation between PðxÞ and

PðzÞ is Nt, the time extent of our lattice. We performed

tests on our 243 ensembles, comparing the single-source

and two-source methods and found that, for the same

number of inversions, the single-source methods gave at

least as small an error as the two-source methods. The

single-source method allows us to measure on more con-

figurations for the same computer time and so we chose

this method. Although we do not discuss three-point mea-

surements in this paper, sharing propagators between them

and the two-point measurements discussed here has helped

to define our measurement strategy.

The measured values of the residual mass m0
res at each

pair of valence and sea light-quark masses ðmx; mlÞ used in
this work are given in Table XVI; in this table the strange-

quark mass is the one used in the simulation mh ¼ 0:03.
Table XVII contains the corresponding results obtained

after reweighting to the physical strange mass [ms ¼
0:0273ð7Þ] determined later in the analysis and presented

in Sec. V. The residual mass in the unitary two-flavor chiral

limit is given in Table VII and Fig. 9.
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FIG. 16 (color online). Nucleon effective mass plots from the 243 ensembles. Results obtained using the Gaussian source are marked

by red squares and those from the box source by blue circles. The four plots correspond to unitary light-quark masses 0.005 (top-left),

0.01 (top-right), 0.02 (bottom-left), and 0.03 (bottom-right).
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FIG. 17 (color online). Effective mass plots for the � baryon from the 243 ensembles. The results were obtained using the

box source. The four plots correspond to unitary light-quark masses 0.005 (top-left), 0.01 (top-right), 0.02 (bottom-left), and 0.03

(bottom-right).

TABLE XV. Baryon mass in lattice units from the � ¼ 2:13,
243 ensembles. fg denotes the fit range.

ml N (Gaussian) N (Box) � (Box)

0.005 0.671(4) f6–12g 0.669(7) f4–12g 0.865(11) f4–12g
0.01 0.699(5) f9–15g 0.706(6) f4–12g 0.891(8) f4–12g
0.02 0.800(8) f8–15g 0.803(7) f4–12g 0.963(8) f4–12g
0.03 0.896(7) f8–15g 0.894(8) f5–12g 1.029(12) f5–12g
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The results for ZA for the 323 ensembles obtained from

the ratios of matrix elements of A4 and A4 are given in

Table XVIII. We obtain ZA ¼ 0:744 75ð12Þ in the chiral

limit with the simulated sea strange mass and ZA ¼
0:744 68ð13Þ when reweighted to the nearby physical

strange mass. This is illustrated in Fig. 18. As explained

in Sec. III and Appendix B, however, in this paper we use

ZV=ZV ¼ 0:7396ð17Þ as the normalization factor for the

local axial current when calculating the central values of

physical quantities.

In order to illustrate the quality of the fits, we present

sample effective mass plots for the unitary simulated pion

on the ml ¼ 0:004, mh ¼ 0:03 ensemble in Fig. 19 and for

the kaon in Fig. 20. The analysis is performed as a simul-

taneous constrained fit to the five pseudoscalar channels as

for the 243 ensembles (see Sec. III). The fits are performed

between tmin ¼ 12 and tmax ¼ 51. We give an example of

the reweighted mh dependence of the unitary pion and

kaon masses in Fig. 21.

Table XIX contains the measured pseudoscalar masses

and decay constants at the simulated strange-quark mass

mh ¼ 0:03. Reweighting to the estimated physical strange-

quark mass mh ¼ 0:0273ð7Þ, we obtain the masses and

decay constants of the pions and kaons in Tables XX and

XXI, respectively.

We use a gauge-fixed box source of size 24 for the �
baryon using the same configurations as for our pion

measurements with valence strange-quark masses mx ¼
0:03 and mx ¼ 0:025 to enable an interpolation to the

physical strange-quark mass. We display the fit to themx ¼
0:03 � baryon mass on the ml ¼ 0:004, mh ¼ 0:03 en-

semble in Fig. 22, along with the dependence of this mass

on the dynamical strange mass under reweighting. We take

our fitting range between tmin ¼ 7 and tmax ¼ 13.
The results for the masses of the� baryon and the scales

r0, r1 and r1=r0 are given in Tables XXII and XXIII,

respectively. r0 and r1 were determined again using

Wilson loops formed from products of temporal gauge

links with Coulomb gauge-fixed closures in spatial direc-

tions, with an exponential fit from t ¼ 4 to t ¼ 8 and the

resulting potential fit to the Cornell form in the range r ¼
2:45� 10. An example of the fit to the time dependence of

the Wilson loops at the physical strange-quark mass is

given in Fig. 23. This figure also shows the fit to the

potential. On these ensembles, the strange-quark mass

dependence of r0 and r1 can be resolved within the statis-

tics, but remains small.

Nucleon and � masses

Baryon effective masses from the 323 ensembles are

plotted in Figs. 24 and 25. The Gaussian-source correlators

give good effective mass signals, while the wall-source

correlators are much noisier; indeed it is hard to identify

a plateau in effective mass signals from the latter. While for

nucleons effective mass signals from the wall source seem

to eventually settle at the same values as from Gaussian-

source correlators, for the � baryons a plateau cannot be

identified from the wall source except for the lightest up/

down mass. Nevertheless fully correlated fits using two

exponentials to represent the contributions of the ground

and first-excited states can be performed for both the

nucleon and �, yielding the results summarized in

Table XXIV. In addition to this fully correlated two-

exponential fit, we have tried two other fit methods: un-

correlated and bootstrap correlated with frozen correlation

matrix [42]. While those earlier analyses were conducted

on smaller statistics, they agree with the two-state fully

correlated fits within 2 standard deviations (see

Table XXV.) We use the results from the two-state fully

correlated fits as our best values of the baryon masses.

TABLE XVI. m0
res on the 323 ensemble set at the simulated

strange-quark mass mh ¼ 0:03 is shown.

mx ml

0.004 0.006 0.008

0.002 0.000 676 1(35) 0.000 668 8(34) 0.000 682 2(37)

0.004 0.000 669 7(34) 0.000 665 1(31) 0.000 679 1(36)

0.006 0.000 662 2(33) 0.000 658 9(30) 0.000 673 6(35)

0.008 0.000 655 0(32) 0.000 652 4(29) 0.000 667 6(34)

0.025 0.000 609 0(24) 0.000 608 9(21) 0.000 621 8(25)

0.03 0.000 599 3(23) 0.000 599 7(20) 0.000 611 5(24)

TABLE XVII. m0
res on the 323 ensemble set at the physical

strange-quark mass is shown.

mx ml

0.004 0.006 0.008

0.002 0.000 671 8(39) 0.000 667 1(36) 0.000 678 1(44)

0.004 0.000 665 8(39) 0.000 663 3(33) 0.000 675 1(42)

0.006 0.000 658 6(37) 0.000 656 9(31) 0.000 669 6(40)

0.008 0.000 651 5(36) 0.000 650 3(30) 0.000 663 6(39)

0.025 0.000 606 3(26) 0.000 605 8(24) 0.000 618 0(31)

0.03 0.000 596 7(24) 0.000 596 6(22) 0.000 608 0(29)

TABLE XVIII. ZA on the 323 ensembles at the simulated and physical strange sea-quark

masses is shown.

mh ZA (chiral) ZAðml ¼ 0:004Þ ZAðml ¼ 0:006Þ ZAðml ¼ 0:008Þ
msim

h ¼ 0:03 0.744 75(12) 0.745 053(54) 0.745 222(45) 0.745 328(48)

m
phys
h 0.744 69(13) 0.745 059(52) 0.745 239(47) 0.745 384(56)
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They also broadly agree with an independent analysis of

baryon masses from our ensembles by the LHP

Collaboration [43] within 2 standard deviations.

V. COMBINED CONTINUUM AND CHIRAL FITS

We now turn to the main objective of this paper which is

to use the results obtained on the 243 and 323 ensembles, as

discussed in the previous two sections, to determine physi-

cal hadron and quark masses and mesonic decay constants

in the continuum limit, for physical values of the light and

strange-quark masses. Since we are reporting our first

results obtained at a second lattice spacing, we present a

careful discussion of our approach to taking the continuum

limit and the relation between evaluating the continuum

limit and determining the physical quark masses. We start

in Sec. VAwith a discussion of what we mean by a scaling

trajectory scaling trajectory and explain in some detail the

choice of scaling trajectory which we use in the following.

In Sec. VB we describe our power-counting scheme, in

which we treat the Oða2Þ terms in our two ensembles and

the next-to-leading order (NLO) terms in SU(2) chiral

perturbation theory as being of comparable size. In order

to gain insights into the uncertainties associated with the

chiral extrapolation, in addition to SU(2) chiral perturba-

tion theory, we introduce an analytic ansatz which is a

simple first-order Taylor expansion in the light-quark mass.

This is explained in Sec. VC. We then discuss the specific

fitting procedure which implements this power-counting

strategy in Sec. VD and in Sec. VE we present and discuss

the results.

A. Defining the scaling trajectory

Although ultimately we will combine the continuum and

chiral extrapolations by performing global fits as described

in Sec. VA 3 and in the following subsections, we start by

focussing on the approach to the continuum limit and

discussing the definition and choice of scaling trajectory.

For the purposes of this subsection we imagine that we can

perform lattice computations for any choice of quark

masses and envision performing a series of lattice simula-

tions for a range of values of �, the inverse square of the

bare lattice coupling. As � ! 1 the lattice spacing, mea-

sured in physical units, will vanish along with all discreti-

zation errors. We refer to such a one-dimensional path

through the space of possible lattice theories as a scaling

trajectory. For 2þ 1 flavor QCD we must vary the bare

lattice mass mudð�Þ of the up and down quarks and msð�Þ
of the strange quark so that this trajectory describes physi-

cally equivalent theories up to order a2 errors. The func-

tions mudð�Þ and msð�Þ can be determined by requiring

two mass ratios (or two other dimensionless quantities) to

remain fixed as � varies. Because of the presence of Oða2Þ
discretization errors, using a different pair of mass ratios

will yield a different trajectory of lattice theories, whose

low-momentum Green’s functions will be equivalent to

those of the first up to Oða2Þ corrections.
In Ref. [1], wherewe obtained results from simulations at

a single value of�, we found that using the masses of the�
and K mesons and the � baryon to determine the lattice

spacinga and the bare values ofmud andmswas an effective

procedure. A natural choice of scaling trajectory would

therefore be to keep the ratios m�=m� and mK=m� fixed

as� varies. Thus, these ratios would be chosen to take their

continuum values for all � with no a2 corrections. This

choice of scaling trajectory then fixes the functionsmudð�Þ
and msð�Þ. In addition, we will identify an inverse lattice

spacing, expressed in GeV, with each point on this scaling

trajectory. To do this we use the mass of the�� baryon and

define 1=a ¼ 1:672=m� GeV where 1.672 GeV is the

physical mass of this baryon and m� is the mass of the

�� as measured along our trajectory in lattice units.
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FIG. 18 (color online). Measurement of ZA for mf ¼ 0:004 on the ml ¼ 0:004, mh ¼ 0:03 ensemble (left panel) and the unitary

chiral extrapolation of ZA for the 323 ensemble set (right panel). The results do not change significantly under reweighting to the

physical strange mass.
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Having defined the scaling trajectory and determined the

lattice spacing at each � by fixing the ratios m�=m�,

mK=m�, and the mass of the � baryon to their physical

values, we are in a position to make predictions for other

physical quantities. The results obtained at a particular

value of � will differ from the physical ones by terms of

Oða2Þ. We imagine eliminating these artefacts by extrap-

olating results obtained at several values of � to the con-

tinuum limit. In order to discuss this continuum

extrapolation it is convenient to introduce some notation.
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FIG. 19 (color online). Effective pion masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator

(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The

horizontal bands represent the result for the mass from a simultaneous fit.
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Let us assume that we have performed lattice calculations

at a series of N values of �, f�eg1	e	N corresponding to

points along the scaling trajectory defined above (in the

present study N ¼ 2). This will determine a series of bare-

quark massesme
f ¼ mfð�eÞwhere f ¼ ud or s. On each of

the lattices we compute a number of physical quantities,

e.g., the kaon leptonic decay constant feK, and our predic-

tion for the physical value of fK is the value obtained by

extrapolating to the continuum limit.

Of course, as already mentioned above, the scaling

trajectory and the assigned value of the lattice spacing at

a particular � are not unique. Had we used three different
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FIG. 20 (color online). Effective kaon masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator

(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The

horizontal bands represent the result for the mass from a simultaneous fit.
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physical quantities to calibrate the lattice at each � and

then used the resulting bare-quark masses and lattice spac-

ing to compute m�=m�, mK=m�, and the mass of the �
baryon, we would find results which differed from the

physical ones by terms ofOða2Þ. Although there is a choice
of the quantities used to define and determine the scaling

trajectory and the value of the lattice spacing at each �, for
a 2þ 1 flavor theory the number of conditions is always

3N, whereN is the number of different� values used in the

simulations and the factor 3 corresponds to the fact that at

each � there are three parameters, the bare massesmud and

ms and the lattice spacing a.
In the above presentation we have tried to provide a

pedagogical introduction to the determination of scaling

trajectories and chose to decouple issues related to the

extrapolations in the mass of the light quark (chiral extrap-

olations) from the discussion. Of course, in practice at

present we are unable to perform simulations at physical

quark masses, i.e., with masses which give the physical

values ofm�=m� andmK=m�, and so chiral extrapolations
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FIG. 21 (color online). We illustrate the mh dependence of the unitary pion (left panel) and kaon (right panel) masses on the

ml ¼ 0:004, 323 ensemble. The values are obtained by reweighting around the simulated value (mh ¼ 0:03).

TABLE XIX. Pseudoscalar masses mxyðmlÞ and the decay constants fxyðmlÞ on the 323

ensembles at the simulated strange-quark mass (mh ¼ 0:03) are shown.

mx my mxyð0:004Þ mxyð0:006Þ mxyð0:008Þ fxyð0:004Þ fxyð0:006Þ fxyð0:008Þ
0.03 0.03 0.3212(3) 0.3216(2) 0.3224(3) 0.0801(3) 0.0804(3) 0.0809(3)

0.025 0.03 0.3073(3) 0.3078(2) 0.3086(3) 0.0786(3) 0.0789(3) 0.0794(3)

0.008 0.03 0.2561(3) 0.2565(2) 0.2579(4) 0.0723(3) 0.0729(3) 0.0738(3)

0.006 0.03 0.2496(3) 0.2500(3) 0.2516(4) 0.0715(3) 0.0721(3) 0.0731(3)

0.004 0.03 0.2430(4) 0.2434(3) 0.2452(5) 0.0707(3) 0.0714(3) 0.0725(3)

0.002 0.03 0.2363(5) 0.2367(3) 0.2388(6) 0.0701(3) 0.0709(4) 0.0723(4)

0.025 0.025 0.2930(3) 0.2934(2) 0.2943(3) 0.0770(3) 0.0775(3) 0.0780(3)

0.008 0.025 0.2392(3) 0.2396(2) 0.2410(4) 0.0709(3) 0.0715(3) 0.0724(3)

0.006 0.025 0.2323(3) 0.2327(3) 0.2342(4) 0.0701(3) 0.0707(3) 0.0717(3)

0.004 0.025 0.2252(4) 0.2256(3) 0.2273(5) 0.0693(3) 0.0700(3) 0.0711(3)

0.002 0.025 0.2180(4) 0.2184(3) 0.2203(5) 0.0686(3) 0.0695(3) 0.0708(4)

0.008 0.008 0.1708(3) 0.1714(2) 0.1727(4) 0.0649(3) 0.0657(3) 0.0666(3)

0.006 0.008 0.1610(3) 0.1616(3) 0.1629(4) 0.0641(3) 0.0648(3) 0.0659(3)

0.004 0.008 0.1506(3) 0.1513(3) 0.1526(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.002 0.008 0.1395(4) 0.1403(3) 0.1417(4) 0.0625(3) 0.0634(3) 0.0646(4)

0.006 0.006 0.1505(3) 0.1512(3) 0.1525(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.004 0.006 0.1393(3) 0.1400(3) 0.1413(4) 0.0624(3) 0.0632(3) 0.0643(3)

0.002 0.006 0.1271(4) 0.1280(3) 0.1293(4) 0.0615(3) 0.0624(3) 0.0637(4)

0.004 0.004 0.1269(4) 0.1278(3) 0.1291(4) 0.0614(3) 0.0623(3) 0.0634(3)

0.002 0.004 0.1133(4) 0.1144(3) 0.1156(4) 0.0605(3) 0.0614(3) 0.0627(4)

0.002 0.002 0.0976(4) 0.0989(4) 0.1001(5) 0.0595(3) 0.0603(3) 0.0617(4)
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are necessary. It will therefore be useful in the following to

discuss the scaling behavior of a general 2þ 1 flavor

theory in which the masses of the pion and kaon differ

from those in nature. Following the conventions defined

elsewhere in this paper, wewill useml andmh for the quark

masses in the DWF lattice action which correspond to the

usual ud and s quarks, and ~ml and ~mh for the corresponding

multiplicatively renormalizable bare-quark masses ~ml ¼
ml þmres and ~mh ¼ mh þmres specific to the DWF ac-

tion. In the next subsection we review the origin of the a2

errors as described by the Symanzik effective theory for

DWF and in the following subsection present our treatment

of scaling for this more general theory.

1. Symanzik effective theory and a2 ! 0 extrapolation

Symanzik’s effective theory provides a powerful frame-

work in which to discuss the approach to the continuum

limit. For any finite value of � we expect the low-

momentum Green’s functions in our lattice theory to agree

with those in a corresponding effective continuum theory.

The effective action for this theory contains not only the

usual dimension-3 and 4 terms standard in QCD but also

higher-dimension operators. If the quark masses and the

coefficients of these higher-dimension operators are prop-

erly chosen then the low-energy Green’s functions of the

lattice and effective theories will agree through Oðad�4Þ
provided the effective theory includes all necessary terms

of dimension up to and including d. This implies that the

low-energy Green’s functions of the lattice theory and the

usual continuum theory will differ by the matrix elements

of these dimension-5 and higher operators which of course

are not present in the standard continuum theory.

For the domain wall fermion calculation presented here

the leading corrections come from operators of dimension

6. While the dimension-5 Pauli term �q	�
F�
q is present,

its chiral properties imply that it is generated by chirality

violation due to propagation between the left and right

domain walls. This same residual breaking of chiral

symmetry gives rise to the residual mass mres, the coeffi-

cient of the dimension-3 mass term which remains when

TABLE XX. Pion masses mxyðmlÞ and decay constants fxyðmlÞ computed on the 323 ensem-

bles at the physical strange-quark mass mh ¼ 0:0273ð7Þ are shown.

mx my mxyð0:004Þ mxyð0:006Þ mxyð0:008Þ fxyð0:004Þ fxyð0:006Þ fxyð0:008Þ
0.008 0.008 0.1706(3) 0.1711(3) 0.1725(5) 0.0645(3) 0.0653(3) 0.0662(4)

0.006 0.008 0.1608(4) 0.1613(3) 0.1628(5) 0.0636(3) 0.0645(4) 0.0654(4)

0.004 0.008 0.1503(4) 0.1510(3) 0.1526(5) 0.0628(4) 0.0636(4) 0.0647(4)

0.002 0.008 0.1392(4) 0.1401(3) 0.1417(5) 0.0620(4) 0.0630(4) 0.0641(4)

0.006 0.006 0.1503(4) 0.1509(3) 0.1524(5) 0.0628(4) 0.0636(4) 0.0646(4)

0.004 0.006 0.1390(4) 0.1398(3) 0.1414(5) 0.0619(4) 0.0628(4) 0.0638(4)

0.002 0.006 0.1268(4) 0.1278(3) 0.1295(5) 0.0611(4) 0.0620(4) 0.0632(4)

0.004 0.004 0.1267(4) 0.1276(3) 0.1292(5) 0.0609(4) 0.0618(4) 0.0630(4)

0.002 0.004 0.1131(4) 0.1142(4) 0.1158(5) 0.0601(4) 0.0610(4) 0.0622(4)

0.002 0.002 0.0974(4) 0.0988(4) 0.1003(5) 0.0590(4) 0.0598(4) 0.0612(5)
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FIG. 22 (color online). We display the fit to the� baryon mass with valence strange massmx ¼ 0:03 on theml ¼ 0:004,mh ¼ 0:03,
323 ensemble showing the quality of the fit with our box source (left panel). We also show the weak dependence of the � baryon

mass with fixed valence mass mx ¼ 0:03 on our simulated mh inferred by the reweighting procedure on the ml ¼ 0:004, 323 ensemble

(right panel).
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the input quark mass is set equal to zero. The largest value

for mres found in our current calculation, mres ¼
0:003 152ð43Þ, is suppressed from unity by more than 2

orders of magnitude. Since a similar suppression for this

dimension 5 operator is expected, the combination of chiral

symmetry and the small value of a�QCD � 0:2 suggest this
term can be ignored and that the largest finite lattice-

spacing errors that we should expect are Oða2Þ.
We require that for our choice of scaling trajectory the

matrix elements of these Oða2Þ Symanzik terms behave as

a2, allowing a linear extrapolation in a2 to give the con-

tinuum limit. This implies that the coefficients of these

operators remain reasonably constant along our trajectory.

This is typically achieved by varying only � and quark

masses along the trajectory so the only variation in the

coefficients of theseOða2Þ terms comes from the variations

in � which are quite small in present scaling studies [44].

2. Scaling and the quark masses

In the present calculation we obtain results using a

number of light-quark masses, all of which are signifi-

cantly larger than the physical quark masses that were

used in the introductory remarks above to describe a physi-

cal scaling trajectory in which m�=m�, mK=m�, and m�

were fixed at their physical values. However, we can easily

generalize our notion of a scaling trajectory to include

families of choices for the parameters ð�; ~ml; ~mhÞ for

which, in an obvious notation, the ratios mll=mhhh and

mlh=mhhh are held fixed. In the language used earlier, we

require that the N triplets of parameters ð�e; ~me
l ; ~m

e
hÞ, 1 	

e 	 N, lie on the same scaling trajectory if

mllð�e; ~me
l ; ~m

e
hÞ

mhhhð�e; ~me
l ; ~m

e
hÞ

¼ mllð�e0 ; ~me0
l ; ~m

e0
h Þ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

; (26)

mlhð�e; ~me

l ; ~m
e

hÞ
mhhhð�e; ~me

l ; ~m
e

hÞ
¼ mlhð�e0 ; ~me0

l ; ~m
e0
h Þ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

; (27)

for each pair e and e0. The ratio of lattice spacings for such
a pair would be defined as

ae

ae
0 ¼ mhhhð�e; ~me

l ; ~m
e
hÞ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

: (28)

The scaling trajectory determines two functions ~mlð�Þ
and ~mhð�Þ, where these bare masses are nontrivial func-

tions of �. While a portion of their � dependence should

reflect their naive mass dimension, these quantities also

carry a logarithmic dependence on a characteristic of the

anomalous dimension of the mass operator �qq in QCD.

Thus, even when expressed as dimensionless ratios, e.g.,

~mlð�Þ=m� and ~mhð�Þ=m�, these parameters will have

singular continuum limits (in fact, the sign of the anoma-

lous dimension of �qq is such that these ratios vanish in the

continuum-limit).

The mass parameters ~ml and ~mh are short-distance

quantities whose definition is free of infrared singularities.

For example, they could be specified by examining high-

momentum, infrared safe Green’s functions with no need

to compute low-energy masses which are dependent upon

the low-energy, nonperturbative behavior of QCD. While

TABLE XXI. Kaon masses mxhðmlÞ and decay constants fxyðmlÞ on the 323 ensembles at the

physical strange-quark mass mh ¼ 0:0273ð7Þ are shown.

mx mxhð0:004Þ mxhð0:006Þ mxhð0:008Þ fxhð0:004Þ fxhð0:006Þ fxhð0:008Þ
0.008 0.247(2) 0.247(3) 0.249(3) 0.0712(4) 0.0718(5) 0.0727(5)

0.006 0.240(2) 0.240(3) 0.242(3) 0.0703(4) 0.0710(5) 0.0720(5)

0.004 0.233(3) 0.234(3) 0.235(3) 0.0695(4) 0.0703(5) 0.0713(5)

0.002 0.226(3) 0.227(3) 0.229(3) 0.0687(5) 0.0698(5) 0.0710(6)

TABLE XXII. Omega baryon masses on the 323 ensembles at

the simulated strange-quark massmh ¼ 0:03 (first two rows) and
at the physical strange-quark mass (third row) are shown.

my mh m�ð0:004Þ m�ð0:006Þ m�ð0:008Þ
0.03 0.03 0.760(2) 0.765(2) 0.766(3)

0.025 0.03 0.733(2) 0.739(2) 0.740(3)

0.0273 0.0273 0.743(6) 0.749(5) 0.753(4)

TABLE XXIII. The quantities r0, r1, and r1=r0 at the simulated (mh ¼ 0:03) and physical

(mh ¼ 0:0273) strange-quark masses on the 323 ensembles. QðmlÞ denotes the quantity

measured with light-quark mass ml.

Quantity mh ¼ 0:03 mh ¼ 0:0273
Qð0:004Þ Qð0:006Þ Qð0:008Þ Qð0:004Þ Qð0:006Þ Qð0:008Þ

r0 5.52(2) 5.50(2) 5.53(2) 5.52(2) 5.52(2) 5.55(2)

r1 3.738(9) 3.718(8) 3.707(9) 3.754(12) 3.728(9) 3.723(10)

r1=r0 0.678(2) 0.676(2) 0.670(2) 0.680(2) 0.675(2) 0.670(2)
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the individual masses ~mlð�Þ and ~mhð�Þ do not have a

continuum limit, both the naive and anomalous scale de-

pendence cancels in their ratio ~mlð�Þ= ~mhð�Þ, which is well
defined in the continuum limit and agrees with the corre-

sponding ratio in conventional renormalization schemes,

such as the regularization independent momentum scheme

(RI/MOM) [45] or MS.
Let us now assume that we have performed lattice

calculations at a series of N values of �, f�eg1	e	N ,

corresponding to points along the scaling trajectory defined

above. This will determine a series of quark masses

~me
f ¼ ~mfð�eÞ where f ¼ l or h. It is natural to introduce

a series of factors which relate the lattice spacings and

quark masses between these N ensembles. For conve-

nience, we identify a primary ensemble 1, and introduce

3ðN � 1Þ factors relating each ensemble e to the ensemble

1 as follows:

Re
a ¼

a1

ae
¼ m1

hhh

me
hhh

; (29)
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FIG. 23 (color online). The effective potential of the Wilson loops with a spatial extent of r ¼ 2:45 on the ml ¼ 0:004 ensemble at

the physical strange-quark mass, overlaid by the fit to the range t ¼ 4–8 (left panel). The right panel shows the static interquark

potential VðrÞ on this ensemble, again at the physical strange-quark mass, as a function of the spatial extent of the Wilson loops,

overlaid by the fit to the Cornell form over the range r ¼ 2:45–10.
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FIG. 24 (color online). Nucleon effective mass plots from the 323 ensembles are shown.
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Ze
f ¼

1

Re
a

~m1
f

~me
f

for f ¼ l or h: (30)

Since the ratio ~ml= ~mh is well defined in the continuum

limit, the corresponding ratio for each of these ensembles

~me
l = ~m

e
h differs from that limit by a term proportional to

ðaeÞ2. This Oða2Þ correction represents the discrepancy

between our choice of scaling trajectory withmll=mlh fixed

as we vary � and an alternative choice where instead

~me
l = ~m

e
h is held fixed. Since these trajectories differ at

Oða2Þ, we expect that

~me
l

~me
h

¼ lim
�!1

�
~mlð�Þ
~mhð�Þ

�

ð1þ cmð�QCDa
eÞ2Þ: (31)

The term proportional to cm arises from the shifts in m2
ll

and m2
lh caused by the first-order effects of dimension-6

terms in the Symanzik effective action. While cm must

vanish as ~me
l ! ~me

h, we prefer not to write cm as propor-

tional to the difference ~me
l � ~me

h because of possible non-

analytic terms in the quark masses (e.g. possible

logarithms of me
l ) that may appear in the low-energy

matrix elements of these dimension-6 operators. If we

divide Eq. (31) evaluated for our primary ensemble 1 by

the same equation applied to the ensemble e and Taylor

expand in the lattice spacing, we obtain the following

useful relation between Ze
h and Ze

l :

Ze
h ¼ Ze

l ð1þ cm�
2
QCD½ðaeÞ2 � ða1Þ2�Þ; (32)

implying the 2ðN � 1Þ Z factors associated with the quark

masses actually depend on N quantities through order a2

(e.g. we can take the (N � 1) Ze
l and cm as the independent

quantities). The constraints implied by Eq. (32) do not

simplify the N ¼ 2 case addressed in the present paper

where we would simply be trading the two parameters Z2
h

and Z2
l for the alternative pair of parameters Z2

l and cm.
Equation (32) provides an explicit estimate of how

scaling violations revise the standard expectation that all

quark masses will scale with a common Z factor as the

cutoff is varied. As we will see from our simulation results

presented below, the terms proportional to cm are small and

difficult to resolve from zero given our statistical errors.

0 5 10 15

0.5

0.55

0.6

0.65

0.7

0.75

0.8
∆

 e
ff

ec
ti

v
e 

m
as

s
Gaussian Source
Wall source
Gaussian 2-exp fit

Groud-state mass from Gaussian 2-exp fit

m
l
 = 0.004

0 5 10 15

0.5

0.55

0.6

0.65

0.7

0.75

0.8

∆
 e

ff
ec

ti
v

e 
m

as
s

Gaussian Source
Wall source
Gaussian 2-exp fit

Groud-state mass from Gaussian 2-exp fit

m
l
 = 0.006

0 5 10 15

0.5

0.55

0.6

0.65

0.7

0.75

0.8

∆
 e

ff
ec

ti
v

e 
m

as
s

Gaussian Source
Wall source
Gaussian 2-exp fit

Groud-state mass from Gaussian 2-exp fit

m
l
 = 0.008

FIG. 25 (color online). � effective mass plots from the 323 ensembles are shown.

TABLE XXIV. Nucleon and � masses in lattice units from the

323 ensembles obtained by two-exponential correlated fits to

Gaussian-source correlators. fg denotes the fit range.

ml N �

0.004 0.468(6) f4–20g 0.596(15) f4–15g
0.006 0.498(4) f4–20g 0.615(9) f4–15g
0.008 0.521(4) f4–20g 0.639(10) f4–15g

TABLE XXV. A comparison of nucleon mass results from

different analyses on the same 323 ensembles is shown.

ml Fully correlated Uncorrelated Bootstrapa LHPb

0.004 0.477(4) 0.465(5) 0.469(4) 0.474(4)

0.006 0.498(2) 0.486(10) 0.489(7) 0.501(2)

0.008 0.517(3) 0.524(4) 0.5254(16) 0.522(2)

aDenotes Ref. [42], where a frozen correlation matrix was used.
bDenotes Ref. [43].
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Since we are now using formulas in which the lattice

spacing ae appears alone rather than in a ratio, e.g., as

ae=ae
0
, it may be useful to explain how we intend this to be

determined. It is natural to start by considering the physical

scaling trajectory discussed in Sec. VA on which

mll=mhhh ¼ m�=m� and mlh=mhhh ¼ mK=m�. For this

physical trajectory, the actual value of the Omega mass

measured in GeV can be used to define the lattice spacing

for any point �e on that trajectory using ae ¼
me

hhh=ð1:672 45ð0:29Þ GeVÞ. In our present study, in order

to reach the physical trajectory a chiral extrapolation must

be performed from the quark masses used in our simula-

tion. Ultimately of course, when we present results for

dimensionful quantities in physical units, it will be neces-

sary to perform the chiral extrapolation and this is the

subject of the following subsections. For the present dis-

cussion of scaling it is sufficient simply to imagine that the

lattice spacing has been determined in this way and this is

the most straightforward way of interpreting the OððaeÞ2Þ
terms appearing in equations in this subsection. We stress

however, that even this is not strictly necessary. We can

consider a scaling trajectory defined by fixed, but unphys-

ical, values of mll=mhhh and mlh=mhhh and define the

lattice spacing by assigning an arbitrary value to Mhhh,

the mass of the hhh baryon on the trajectory in ‘‘physical’’

units, ae � me
hhh=Mhhh. While the value of ae defined in

this way depends, of course, on the choice of Mhhh, this

arbitrariness is simply absorbed by a change in constants

such as cm in (31). For the discussion in this subsection it is

sufficient to note that such a definition of the lattice spacing

is possible in principle, the numerical determination of ae

does not actually have to be performed.

In the analysis to follow we will examine a family of

nearby scaling trajectories in which ~ml and ~mh vary over

limited ranges (specifically, ~ml varies up to about 0.013 on

our coarser lattice and ~mh varies by up to 20% around ~ms).

Consider two such trajectories, defined by keeping the

ratios mll=mhhh and mlh=mhhh fixed along each trajectory,

but taking different values on the two trajectories. Let

mll=mhhh ¼ rll and mlh=mhhh ¼ rlh on the first trajectory

and mll=mhhh ¼ r0ll and mlh=mhhh ¼ r0lh on the second. As
� ! 1, the ratio of bare-quark masses on the two trajec-

tories will approach a limit up to Oða2Þ corrections:
~me
fðrll; rlhÞ

~me

fðr0ll; r0lhÞ
¼ lim

�!1

�
~mfð�Þ
~m0
fð�Þ

�

ð1þ dm;fð�QCDa
eÞ2Þ; (33)

where f ¼ l or h, and ~me
l ðrll; rlhÞ and ~me

hðrll; rlhÞ
[ ~me

l ðr0ll; r0lhÞ and ~me
hðr0ll; r0lhÞ] are the values of the

bare-quark masses on ensemble e such that mll=mhhh ¼
rll and mlh=mhhh ¼ rlh [mll=mhhh ¼ r0ll and

mlh=mhhh ¼ r0lh]. The ratios Ra ¼ m1
hhhð ~m1

l ðrll; rlhÞ;
~m1
hðrll; rlhÞÞ=me

hhhð ~me
l ðrll; rlhÞ; ~me

hðrll; rlhÞÞ and R0
a ¼

m1
hhhð ~m1

l ðr0ll; r0lhÞ; ~m1
hðr0ll; r0lhÞÞ=me

hhhð ~me
l ðr0ll; r0lhÞ; ~me

hðr0ll;
r0lhÞÞ each describe the change in lattice scale as the bare

coupling changes from �1 to �e. In the limit of small

bare coupling, this change of scale can be determined

entirely from the short-distance part of the theory and

must be the same for our two trajectories up to order a2

corrections since these two trajectories differ only in the

choice of quark masses. Thus, we can write

Ra

R0
a

¼ 1þ da�
2
QCDððaeÞ2 � ða1Þ2Þ; (34)

where we have explicitly represented the fact that each

ratio and hence the ratio of ratios must approach unity as

ae ! a1. Both the coefficients dm;f and da will vanish

when the primed and unprimed trajectories that are being

compared become identical.

Taking the ratio of two versions of Eq. (33), one for �e

and the other for our primary ensemble �1 and using

Eq. (34), we obtain an expression for the change in the

factors Zf between these two trajectories:

Ze

f

Ze0
f

¼ ð1þ ðdm;f þ daÞ�2
QCD½ða1Þ2 � ðaeÞ2�Þ: (35)

Since the changes in ~ml and ~mh between these two trajec-

tories which we wish to compare are small, the resulting

coefficients dm;f and da will also be small and we will

neglect the Oða2Þ correction on the right-hand side of

Eq. (35). Thus, we will use the same values for Zl and Zh

for this family of nearby trajectories, i.e., we drop lattice

artefacts proportional to ~ml and ( ~mh � ~ms) and so neglect

the mass dependence of Zl and Zh in this limited range of

masses. In the following we will refer to this range for ~ml

and ~mh as their ‘‘allowed range.’’

3. Fitting strategies

We exploit the above relations between numerical re-

sults obtained at the two values of � for which we have

performed simulations in two ways. The first we label the

‘‘fixed-trajectory’’ method. In this approach we determine

Ra, Zl, and Zh by matching results obtained at a single pair

of equivalent quark masses [46]. For example, the masses

used at one value of �may correspond to values at which a

simulation was actually performed. The corresponding set

of masses for the other � might be determined by linear

interpolation to make the two ratios mll=mhhh and

mlh=mhhh agree with those on the first ensemble. The ratio

of lattice spacings and the two Zf factors are then deter-

mined from Eqs. (29) and (30). It will be important to recall

that Zl and Zh are constant in the allowed range of quark

masses. Finally, knowing the three factors Ra, Zl, and Zh

we make a common fit to the mass dependence of physical

quantities computed for both values of �.
In the final step, we adopt an ansatz for the mass depen-

dence that is expected to be accurate both for the points in

our calculation and for the physical values to which we

wish to extrapolate, specifically a NLO chiral expansion

about the chiral limit or a simple Taylor expansion about
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the physical point. Each ansatz for the continuum theory,

when combined with the three scaling factors Ra, Zl, and

Zh and with any required a2 corrections, will then provide

a set of formulas which should describe all of our data for

both � values. For example, in the chiral fits described in

the next section we can use a common set of LECs to fit

both sets of data provided we scale the values used on one

set by the required factors of Ra, Zl, and Zh before we use

them on the other. Where explicitOða2Þ terms are required,

these can be added with unknown coefficients which are

also scaled appropriately between our two values of �. In
such a combined chiral and a2 expansion we adopt a

power-counting scheme, described below, so that only

effects of a similar minimum size are consistently

included.

During the initial process of determining Ra, Zl, and Zh

we cannot assign a physical value to the lattice spacing.

The original trajectory being used does not correspond to

physical masses so no notion of ‘‘GeV’’ exists for that case.

Of course, the further fitting to the quark mass dependence

of the two ensembles is introduced to allow extrapolation

to physical values for the ratios mll=mhhh and mlh=mhhh.

Whenm� is evaluated at this same physical point, its value

can be compared with 1.672 GeV to determine the lattice

scale.

This fixed-trajectory method is intended to cover a wider

range of possible scaling trajectories than the example

discussed above where the trajectory passes precisely

through one of the simulation points. If we wish, we can

adopt an ansatz for the quark mass dependence of m�, mK,

and m� and perform this fixed-trajectory scaling with the

parameters Ra, Zl, and Zh allowed to vary and fix their

values from Eqs. (29) and (30) at values of ml and mh for

which the ratiosmll=mhhh andmlh=mhhh take their physical

values.

The second approach, termed ‘‘generic scaling,’’ intro-

duces the factors Ra, Zl and Zh as parameters into the

ansatz being used to fit the quark mass dependence. In

this approach we perform a fit to all our data for m�, mK,

and m� over a range of quark masses for which the fitting

ansatz is accurate and for which the use of fixed values for

Ra, Zl, and Zh is legitimate. In this generic scaling ap-

proach, our choice of scaling trajectory with fixed hadron

mass ratios mll=mhhh and mlh=mhhh and with mhhh deter-

mining the lattice scale is realized somewhat indirectly.

The three conditions associated with this choice of scaling

trajectory are realized by omitting possible a2 corrections
from the expressions used to fit mll, mlh, and mhhh. The

resulting trajectory can therefore be interpreted as being

the one along which the masses of the pion, kaon, and �
baryon take their physical values, as was the case in the

discussion of Sec. VA. The difference of course, is that

whereas in Sec. VA we envisaged (unrealistically at

present) being able to simulate directly at the physical

value of ml, we now reach the physical point after an

extrapolation in quark masses. The detailed discussion of

the ChPT functions used in describing the quark

mass dependence of the pion and kaon masses is

given in Sec. VB and those for the analytic ansatz in

Sec. VC below. However, both our ChPT and Taylor

expansion ansätze stipulate that to the order being studied

mhhh is a linear function of ~ml and ~mh. It is instructive to

explore this case here.

Included among the equations used to determine the

low-energy constants and the scaling factors Ra, Zl, and

Zh are two equations for mhhh on our two ensembles:

m1
hhhð ~ml; ~mhÞ ¼ m1

hhhð0; ~mh0Þ þ c1m�ml
~ml

þ c1m�mh
ð ~mh � ~mh0Þ; (36)

m2
hhhð ~ml; ~mhÞ ¼

1

Ra

m1
hhhðRaZl ~ml; RaZh ~mhÞ

¼ 1

Ra

½m1
hhhð0; ~mh0Þ þ c1m�ml

RaZl ~ml

þ c1m�mh
ðRaZh ~mh � ~mh0Þ�: (37)

Here 1 is our primary ensemble, for us that is the one with

� ¼ 2:25 and the 323 � 64 volume, while the second

ensemble is the one with the coarser lattice spacing and

is labeled 2. me

hhhð ~ml; ~mhÞ are the hhh-baryon masses

corresponding to bare-quark masses ~ml and ~mh on en-

semble e. Although we have written ~mh0 as a general

constant, we have in mind to use the equations with ~mh0

in the allowed range of the physical bare strange-quark

mass in the primary ensemble. Equations (36) and (37)

define the three constants m1
hhhð0; ~mh0Þ, c1m�ml

, and c1m�mh

which are related to the physical�� mass and its physical

dependence on the quark masses. The absence of Oða2Þ
corrections to Eqs. (36) and (37) implements our choice

that m� is being used to set the scale and hence by

construction contains no finite lattice-spacing errors.

While part of a larger set of equations which are being

used to determine the low-energy constants as well as Ra,

Zl and Zh, the leading-order effect of these two equations is

to determine Ra. Note that this is identical to imposing

Eq. (29) in the fixed-trajectory method at the point ~ml ¼ 0,
~mh ¼ ~mh0. Since the variation of Ra as ~ml and ~mh change

over their allowed range is of the same size as the variation

of Zl and Zh over this same range it can also be neglected,

so any particular choice of ~mh is equivalent to any other

within this allowed range.

The fixed trajectory and generic scaling methods are

similar in nature. Both require that an ansatz be adopted

to allow the quark mass dependence of lattice quantities to

be described in order to define the scaling parameters Ra,

Zl, and Zh and to extrapolate to the physical point. Both

assume that the scaling relations between the two ensem-

bles defined by Ra, Zl, and Zh hold over the allowed range

of masses. The fixed-trajectory method corresponds most

closely to our original definition of a scaling trajectory and
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decouples the matching of the two lattices from the chiral

extrapolation. It requires however, the introduction of a

convenient but arbitrary point at which the matching be-

tween the two ensembles is performed. The generic

method avoids this arbitrary choice and applies these as-

sumptions uniformly over the entire range of allowed

masses. The fixed-trajectory method determines Ra, Zl,

and Zh in an iterative fashion as explained in Sec. VD.

The generic approach determines the coefficients in the

adopted ansatz from a single �2 minimization. The physi-

cal quark masses are then determined by inverting the

resulting equations which give m�, mK, and m� in terms

of ~ml and ~mh.

The detailed discussion and results presented in this

paper correspond to the fixed-trajectory method; fits using

the generic scaling approach were performed to monitor

the consistency of the results and estimated errors.

B. Scaling and chiral perturbation theory

At the start of Sec. VA we discussed the continuum

extrapolation in an idealized situation in which we can

perform simulations at any value of the quark mass ml.

In reality this is not the case; for example, the lightest

unitary pion appearing in the current study has mass

290 MeV. In order to compare our results with nature

we therefore need to extrapolate to lighter quark masses

and this was already acknowledged when discussing the

fitting strategies in Sec. VA3 above. We now explain

how we combine the continuum and chiral extrapolations

in global fits. We start in this section by using SU(2)

chiral perturbation theory for the mass dependence, with

the expectation that the extrapolation will be made more

precise if constrained by the theoretically known behav-

ior of QCD in the chiral limit [1]. However, in order to

estimate possible systematic errors associated with this

extrapolation and to obtain a more complete understand-

ing of the implications of our calculation, we also exam-

ine a simpler analytic extrapolation to physical quark

masses [47] and this is explained in the following sub-

section. Although later we will perform extrapolations

using partially quenched ensembles, for the purposes of

this introduction we restrict the discussion to the unitary

theory in which the valence and sea-quark masses are

equal.

We now explain the power-counting scheme we employ

to identify NLO corrections to the chiral and continuum

limits. Since the pion mass and decay constant are central

to SU(2) ChPT, we begin by considering the predictions of

continuum NLO ChPT for these two quantities:

m2
ll ¼ �l þ �l �

�
16

f2
ðð2Lð2Þ

8 � Lð2Þ
5 Þ þ 2ð2Lð2Þ

6 � Lð2Þ
4 ÞÞ�l

þ 1

16�2f2
�l log

�l

�2
�

�

; (38)

fll ¼ fþ f �
�
8

f2
ð2Lð2Þ

4 þ Lð2Þ
5 Þ�l �

�l

8�2f2
log

�l

�2
�

�

: (39)

Here mll and fll are the mass and decay constant of the

pseudoscalar meson composed of two light quarks, f, L4,

L5, L6, and L8 are the conventional low-energy constants

and �� is the usual chiral scale. The quantity �l comes

directly from the lowest order chiral symmetry breaking

term in the effective chiral theory and is proportional to the

QCD light-quark mass. It is conventionally written �l ¼
2B ~ml, where B is another low-energy constant.

We now discuss how we apply these formulas to de-

scribe the low-energy behavior of lattice theories which lie

on a scaling trajectory. For a sequence of ensembles

feg1	e	N lying on such a scaling trajectory not only will

the quark masses and lattice units, ð ~me

l ; ~m
e

h; a
eÞ be related,

but also, when expressed in physical units, the quantities f,
L4, L5, L6, and L8 should take the same values up to Oða2Þ
corrections. The same is true for the renormalization inde-

pendent combination �l ¼ 2B ~ml (see the discussion be-

low). As detailed in Ref. [1], chiral perturbation theory at

finite lattice spacing for domain wall fermions involves a

simultaneous expansion in the explicit bare quark mass,

ml, the squared lattice spacing, a2, and the residual chiral

symmetry breaking arising from the finite separation, Ls,

between the two four-dimensional walls in the fifth dimen-

sion. We will denote this last quantity by e��Ls , suggesting

the exponential decrease in such residual chiral symmetry

breaking found in perturbation theory for DWF. (The

actual behavior is a sum of exponential and inverse power

dependence on Ls.) No new terms need to be added to the

resulting effective low-energy theory to describe the result-

ing Green’s functions to NLO in the parameters ~ml, a
2, and

e��Ls . Thus, we can use equations with the form of

Eqs. (38) and (39) to describe the lattice results for mll

and fll along a scaling trajectory, provided we work to

NLO in a power-counting scheme which treats the quanti-

ties �l=ð4�fÞ2, a2�2
QCD, and e��Ls as equivalent and keep

a single power of any of these quantities as a correction.

We must now determine how the parameters appearing in

these equations must be adjusted to describe lattice results

at finite a2.
Since the scale �� can be freely varied if the other

analytic terms are appropriately changed, we will choose

this quantity to be constant if measured in physical units.

Thus, for each point on our physical scaling trajectory we

will choose �� ¼ m� � 1=1:672, giving it the value of

1 GeV. Because of their proportionality to the NLO factor

�l all of the parameters which appear in the large curly

brackets on the right-hand side of Eqs. (38) and (39) can be

given their continuum values, dropping possible Oða2Þ
terms as being of next-to-next-to-leading order (NNLO)

in our power-counting scheme. Thus, within those brackets

the quantities f, L4, L5, L6 and L8, when expressed in
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physical units, can be given identical values for the ensem-

bles on the scaling trajectory.

In contrast, when Eq. (39) is used to describe our finite

lattice-spacing results, the LO quantity fe determined on

ensemble e, expressed in physical units, depends on �e.

However, it approaches its continuum limit with Oða2Þ
corrections and so we write fe ¼ fþ cfðaeÞ2.

Given the definition of a scaling trajectory, the variation

of the quantity �e
l needed to apply Eq. (38) to the ensemble

e is actually trivial. Because our choice of quark mass ~me
l

gives the same value for mll for each ensemble e on our

scaling trajectory, all of the quantities in Eq. (38) with the

possible exception of the �e
l which we are now consider-

ing, are the same when expressed in physical units for all

points on the scaling trajectory. Thus, �e
l ¼ 2Be ~me

l =ðaeÞ2
must be a constant as well, where Be and ~me

l are explicitly

left in lattice units. Since we know how the quantities ~ml

and a2 are related between an ensemble e and our primary

ensemble 1, we can determine the N � 1 constants Be in

terms of the single constant B1:

Be ¼ Ze

l

Re
a

B1; (40)

without any a2 corrections. Because of the complex scaling

behavior of the mass, we will treat B1 as one of the LECs to

be determined in our fitting and not relate it to a physical

continuum quantity whose definition would require intro-

ducing a continuum mass renormalization scheme.

We conclude that our lattice results for light pseudosca-

lar masses and decay constants obtained from a series of

ensembles feg can be described through NLO by the

formulas:

ðme
llÞ2 ¼�e

l þ�e
l �

�
16

f2
ðð2Lð2Þ

8 �Lð2Þ
5 Þþ2ð2Lð2Þ

6 �Lð2Þ
4 ÞÞ�e

l

þ 1

16�2f2
�e

l log
�e
l

�2
�

�

; (41)

fell ¼ f½1þ cfðaeÞ2� þ f �
�
8

f2
ð2Lð2Þ

4 þ Lð2Þ
5 Þ�e

l

� �e

l

8�2f2
log

�e

l

�2
�

g; (42)

with

�e
l ¼

Ze
l

Re
a

B1 ~me
l

ðaeÞ2 ; (43)

where all quantities in Eqs. (41) and (42) are expressed in

physical units [except for B1 and ~me
l in Eq. (43) which are

given in lattice units].

Two important refinements should be mentioned. First,

for the case of a physical scaling trajectory, i.e., one which

terminates in the physical masses m�, mK, and m�, these

physical units are naturally GeV. However, for other scal-

ing trajectories appropriate physical units to use can be

those in which the Omega mass is unity. Second, for

simplicity in Eqs. (38), (39), (41), and (42) we have treated

the heavy-quark mass as fixed and not displayed the de-

pendence of the quantities f, B, L4, L5, L6, and L8 on mh.

In practice we can easily generalize these equations to

describe the dependence of mll and fll on mh as well.

Provided we limit the variation of mh to a small range

about an expansion point ~mh0, this variation can be de-

scribed by including a linear term inmh � ~mh0 and treating

this term as NLO in our power-counting scheme. Thus,

such extra linear terms will only be introduced into the

leading-order terms in Eqs. (41) and (42).

Next we present the corresponding formulas for the

quantities mK and m� which are used in the determination

of the scaling trajectory and in the assignment of a lattice

spacing at each value of �:

ðme

lhÞ2 ¼ ðmðKÞÞ2 þ ðmðKÞÞ2
�
�1 þ �2

f2
�e

l

�

; (44)

me
hhh ¼ mð�Þ þmð�Þcm�;ml

�e
l : (45)

Here mðKÞ and mð�Þ are the mass of the lh meson and the

hhh baryon, respectively, in the SU(2) chiral limit, i.e.,

with ~ml ¼ 0, for the value of ~mh used in the simulation.

Similarly the LECs �1;2 and cm�;ml
depend on ~mh and we

are using the notation for the LECs �1;2 which we intro-

duced in [1]. [Note that cm�;ml
, whose value is given in

Table XXVII below, should be distinguished from the

related parameter c1m�ml
which appears in Eqs. (36) and

(37) above.] The absence of any corrections of Oða2Þ on
the right-hand sides of Eqs. (44) and (45) follows from the

same argument which justified omitting an Oða2Þ correc-
tion from the right-hand side of Eq. (41). For masses ~me

l

TABLE XXVI. Values of the quark mass ratios Zl and Zh and the lattice-spacing ratio Ra determined by matching at five points over

both ensemble sets. The quark masses here are quoted without the additive mres correction. The ensemble e � M.

M ðamlÞM ðamhÞM ðamlÞe ðamhÞe Zl Zh Ra

323 0.004 0.03 0.003 13(13) 0.038 12(80) 0.980(15) 0.976(11) 0.7617(72)

323 0.006 0.03 0.005 83(12) 0.038 39(51) 0.981(9) 0.974(7) 0.7583(46)

323 0.008 0.03 0.008 60(19) 0.038 69(64) 0.979(10) 0.972(8) 0.7545(58)

243 0.005 0.04 0.005 45(11) 0.031 48(51) 0.985(12) 0.978(9) 0.7620(57)

243 0.01 0.04 0.008 97(18) 0.030 74(57) 0.974(11) 0.968(9) 0.7517(70)
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and ~me

h lying on a scaling trajectory the left-hand sides of

these equations must all be the same because of our defi-

nition of scaling trajectory. Because of our power-counting

scheme, no a2 corrections need to be included in the NLO

terms proportional to �e
l on the right-hand side of these two

equations. Therefore the leading-order termsmðKÞ andmð�Þ

must also be the same for all ensembles when expressed in

physical units and no Oða2Þ correction can appear. As

discussed above, these equations can be generalized to

describe the NLO dependence on ~mh varying about an

expansion point ~mh0. In fact, for the � baryon this more

general case for Eq. (45) was described in the previous

subsection in the equivalent Eqs. (36) and (37).

Note that the coefficient of the chiral logarithm in

Eq. (41) includes a factor which depends on f, the

pion decay constant in the SU(2) chiral limit [all other

factors of f in Eqs. (41) and (44) can be absorbed into a

redefinition of LECs which in any case are determined

by fitting]. This low-energy constant f can be deter-

mined from the measured values of fll using Eq. (42),

but to NLO it can also be replaced by the measured

values of fll.
As described in Sec. VA3, these ChPT formulas can

now be used to determine physical results in the continuum

limit from those obtained on our two lattice spacings. We

can employ the fixed-trajectory method, finding the ratios

Zl and Zh which relate a specific choice of quark masses on

one ensemble to those on the other which lie on the same

scaling trajectory. The corresponding ratio of values of

mhhh determines Ra. These three quantities then allow a

single set of LECs to be used to extrapolate the results of

both ensembles to the continuum limit and to the physical

value of the light-quark mass using Eqs. (41), (42), (44),

and (45). As a result we learn the physical values of

~mudð�eÞ, ~msð�eÞ, and ae on our two ensembles. In other

words, we determine the quark masses and lattice spacings

for our two ensembles which lie on the physical scaling

trajectory.

Alternatively, we can use the generic fitting approach

and introduce the three parameters ðZl; Zh; RaÞ into the

four equations, Eqs. (41), (42), (44), and (45), and obtain

a fit to the lattice data from both ensembles for which the

quark masses lie in the allowed range. The resulting values

of the LECs and ðZl; Zh; RaÞ then determine the functions

me
llð ~ml; ~mhÞ, me

lhð ~ml; ~mhÞ, and me
hhhð ~ml; ~mhÞ. The physical

quark masses on each ensemble, me
ud ¼ mudð�eÞ and

me
s ¼ msð�eÞ, are then obtained by solving the equations:

me

llð ~me

ud; ~m
e
s Þ

me
hhhð ~me

ud; ~m
e
s Þ
¼m�

m�

and
me

lhð ~me

ud; ~m
e
s Þ

me
hhhð ~me

ud; ~m
e
s Þ
¼mK

m�

; (46)

where on the right-hand sides the ratios take their physical

values.

Having determined mudð�eÞ, msð�eÞ, and ae as de-

scribed above, we are in a position to compute other

physical quantities. For example, at NLO in our power

counting the behavior of the kaon decay constant fK is

felh ¼ fðKÞ½1þ cfðKÞðaeÞ2� þ fðKÞ
�
�3 þ �4

f2
�e
l

� 1

ð4�fÞ2
3

4
�e
l log

�e
l

�2
�

�

; (47)

where fðKÞ is the result in the SU(2) chiral limit ( ~ml ¼ 0),
�3;4 are mh-dependent low-energy constants and cfðKÞ is a

constant. For each �e, having determined ~msð�eÞ we mea-

sure felh for ~me
h ¼ ~msð�eÞ as a function of ~ml; fit the mea-

sured values at all �e to determine the LECs and cfðKÞ in

Eq. (47) andfinally obtain the physical value offK by setting

a ¼ 0 and ~ml ¼ ~mud. Such a procedure is then generalized

to the other physical quantities we wish to compute.

C. Scaling combined with an analytic

ansatz for the chiral dependence

While we know that the ansatz based on chiral pertur-

bation theory described in the previous subsection is valid

in the limit of small u and d quark masses, we do not know

the precision with which it holds over the range of masses

which we analyze in this paper (corresponding to data in

the range 240 MeV 	 m� & 420 MeV). Indeed it is pre-

cise lattice simulations which will answer such questions.

In order to obtain some understanding of the corresponding

systematic uncertainties, in addition to the procedures

based on chiral perturbation theory described in

Sec. VB, we consider an ansatz based on a first-order

Taylor expansion about a nonzero quark mass, in the style

TABLE XXVII. Parameters of the global fit to our ensembles

using NLO ChPT without finite-volume corrections (second

column) and with finite-volume corrections (third column). For

the unitary theory the parameters are defined in Sec. VB and for

the partially quenched theory in Appendix B of Ref. [1].

Parameter No FV corrections With FV corrections

B 4.12(7) GeV 4.03(7) GeV

f 0.110(2) GeV 0.112(2) GeV

cf 0:05ð7Þ GeV2 0:04ð7Þ GeV2

Lð2Þ
4 �0:000 00ð7Þ �0:000 05ð7Þ

Lð2Þ
5 0.00050(5) 0.00047(5)

Lð2Þ
6 �0:000 03ð4Þ �0:000 05ð4Þ

Lð2Þ
8 0.000 55(2) 0.000 59(2)

mðKÞ 0.4856(4) GeV 0.4854(4) GeV

fðKÞ 0.141(3) GeV 0.143(3) GeV

cfðKÞ 0:01ð6Þ GeV2 0:01ð6Þ GeV2

�1 0.0043(9) 0.0046(10)

�2 0.023(1) 0.024(1)

�3 �0:0018ð9Þ �0:0016ð10Þ
�4 0.0058(2) 0.0057(2)

mð�Þ 1.666(2) GeV 1.666(2) GeV

cm�;ml
0:20ð6Þ GeV�2 0:20ð6Þ GeV�2
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of Refs. [47,48]. Within this approach, since we do not

include chiral logarithms, we are not able to take the chiral

limit and only assume the validity of the analytic ansatz

between the physical point (to which we extrapolate) and

the region where we have data. In this work we only

consider linear, first-order fits and are therefore insensitive

to the choice of expansion point which we take to be the

same as that at which we match the ensembles when using

the fixed-trajectory method. This simplifies the discussion

below of the simultaneous expansion in a2 and mass

differences. Beyond first order, convergence may be im-

proved by considering an expansion point between the

region in which we have data and the physical point, but

this is beyond the scope of our current analysis.

Using the analytic ansatz for m2
� as a function of the

quark mass mq, we find numerically that the constant

(mass-independent) term is consistent with zero, indicating

that the tangent of m2
�ðmqÞ in the unitary case does pass

through the origin. Thus, at our statistical precision, no

significant chiral curvature is needed to satisfy Goldstone’s

theorem, however we retain the view that we are indeed

using a model which is valid only in a restricted region of

nonzero quark masses.

Goldstone’s theorem also applies in the partially

quenched theory and the pion mass vanishes as the

valence-quark masses are taken to zero while keeping the

sea-quark masses fixed. In this case however, our linear fit

extrapolates to a nonzero pion mass for massless valence

quarks, and this naturally implies that some form of cur-

vature is required at smaller masses. This is consistent with

enhanced chiral logarithms in the partially quenched the-

ory. However, the fits do not necessarily imply that chiral

logarithms at NLO correctly represent the quark mass

dependence between the simulated range of masses and

the physical point. Instead, in this approach the sum over

multiple orders of chiral perturbation theory is assumed to

be approximated by a linear dependence in the relevant

range of masses. It is also possible of course that the

simulated range of masses is outside the useful domain

of chiral perturbation theory and that, for example, phe-

nomenological models based on combining NLO chiral

perturbation theory with arbitrary analytic subsets of terms

which appear at NNLO and NNNLO are less well moti-

vated than our linear ansatz.

For m2
� and f� it is convenient to define the average

valence-quark mass ~mv ¼ ~mxþ ~my

2 . As in Sec. VB, we apply

a power-counting rule in a double expansion in mx �mm,

my �mm, ml �mm, and a2, where mm is the mass at

which we match the ensembles which we also choose to

be the point around which we perform the Taylor expan-

sion and we recall that mx;y and ml are the valence and sea

light-quark masses, respectively, (here we allow for partial

quenching). For the pion mass we use the ansatz

m2
xy ¼ C

m�

0 þ C
m�

1 ð ~mv � ~mmÞ þ C
m�

2 ð ~ml � ~mmÞ; (48)

where we use our standard notation in which the subscripts

xy imply that the two valence quarks have massmx andmy,

respectively. By the definition of our scaling trajectory,

there is no Oða2Þ term at the match point and so there is

no correction to C
m�

0 . Within our power counting we could

equivalently use

m2
xy ¼ C

m�

0 þ C
m�

1 ~mv þ C
m�

2 ~ml; (49)

where for convenience we redefine C
m�

0 between Eqs. (48)

and (49).

In searching for evidence of chiral logarithms it is

conventional to plot the ratio m2
xy= ~mv as a function of the

quark masses. With the ansatz proposed in Eq. (49)

m2
xy

~mv

¼ Cm�

0

~mv

þ C
m�

1 þ Cm�

2 ~ml

~mv

; (50)

and we note that an observed deviation of the mass depen-

dence of
m2

xy

~mv
from a constant in the finite range of quark

masses which can be simulated, is not in itself unambig-

uous evidence of a nonanalytic structure.

For decay constants, which do not vanish in the chiral

limit, the Oða2Þ term is not sensitive to the choice of

expansion point:

fxy¼Cf�
0 ½1þCf�

a2�þCf�
1 ð ~mv� ~mmÞþCf�

2 ð ~ml� ~mmÞ;
(51)

� Cf�
0 ½1þ Cfa

2� þ Cf�
1 ~mv þ Cf�

2 ~ml; (52)

where again we have redefined C
f�
0 between the first and

second lines.

Following a similar argument, at a fixed strange-quark

mass, we take the light-quark mass dependence of the kaon

mass and decay constant and the mass of the � baryon to

be given by

m2
xhða;mlÞ ¼ CmK

0 þ CmK

1 ~mx þ CmK

2 ~ml; (53)

fxhða;mlÞ ¼ C
fK
0 ½1þ CfKa

2� þ C
fK
1 ~mx þ C

fK
2 ~ml; (54)

mhhhða;mlÞ ¼ C
m�

0 þ C
m�

2 ~ml: (55)

We stress that the constants Cm�
n , Cf�

n , Cf, C
mK
n , CfK

n , CfK
,

and Cm�
n implicitly depend on the strange-quark mass.

D. Procedure for combined scaling and chiral fitting

Having introduced the theoretical framework behind our

combined scaling and chiral fits in Secs. VB and VC we

now explain its practical implementation. The formulas

given above which describe the combined behavior are

valid only for a fixed strange-quark mass and we are faced

with the problem that the physical strange mass is not

known a priori but is an output of the calculation. The

procedure for performing the combined chiral-continuum
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fits is therefore necessarily iterative. As explained in more

detail below, we start with some initial values for the lattice

spacings and quark masses, perform the fits, and then use

linear interpolations inmh to obtain updated estimates. The

process terminates when the updated estimates converge.

During this iterative procedure we use reweighting (see

Sec. II D) to adjust all pionic observables to the new

strange-quark mass on each ensemble. For kaon and �
observables a linear interpolation between the unre-

weighted unitary measurement, and measurements with a

second valence strange quark (reweighted-to-be-unitary)

suffice to obtain that observable for my ¼ mh ¼ m
guess
s .

For the remainder of this subsection we explain further

the procedure which we use to match lattices with different

� and present results for the ratios Re
a and Ze

f defined in

Eqs. (29) and (30) for our ensembles using the fixed-

trajectory method explained in Sec. VA3. We start by

taking a specific value of ðml; mhÞM on the ensemble M

to which the other ensembles are matched. We refer to this

as the matching point. The ensemble set M may be the

same as the primary ensemble 1, but does not need to be.

As discussed in Sec. VA, the matching to other ensembles

e � M is performed by requiring that the ratios of had-

ronic masses mll

mhhh
and mlh

mhhh
are the same on all lattices at the

matching point. Although the final physical predictions do

not depend upon the choice of matching point, certain

choices are favored due to the quality of the data at the

matching point and the range over which the data must be

interpolated/extrapolated on the other ensembles to per-

form the matching. The ideal point has as small a statistical

error as possible and lies within the range of simulated data

on all of the matched ensembles such that only a small

interpolation is required. In practice, the errors on the mass

ratios at the matching point can be reduced by fitting to all

partially quenched simulated data on the ensemble set M

and interpolating to the matching point along the unitary

curve. We use linear fitting functions for the light-quark

mass dependence of the pseudoscalar mesons and the �
baryon in these short interpolations:

m2
xy ¼ c0 þ clml þ cvðmx þmyÞ; (56)

m2
xh ¼ d0 þ dlml þ dvmx; (57)

mhhh ¼ e0 þ elml; (58)

where as elsewhere x, y (l) represent the light valence

(sea) quarks and h represents the heavy-quark.

Equations (56)–(58) are written in lattice units. Although

the linear behavior in Eqs. (56)–(58) is similar to that used

in the analytic ansatz, Eqs. (49), (53), and (55), we stress

that the meaning is different. When using the analytic

ansatz we assume its validity in the full range of masses

between the physical ones and those we simulate.

Equations (56)–(58) on the other hand, are only assumed

to represent the mass behavior in the short intervals

between the matching and simulated points on ensembles

e � M, independently of whether we subsequently use

chiral perturbation theory or the analytic ansatz to perform

the chiral extrapolation.

Once a matching point has been chosen, the matching

proceeds as follows:

(1) For each set of ensembles e � M, we perform an

independent partially quenched linear fit to the

simulated pion, kaon, and Omega masses using the

forms given in Eqs. (56)–(58).

(2) We make a first estimate of the pair of quark masses

ðml; mhÞe on each ensemble set e � M that corre-

sponds to the matching point.

(3) We then interpolate the three hadronic masses to the

estimatedme
l for each value of the simulated unitary

heavy-quark mass.

(4) We linearly interpolate each quantity to the esti-

mated value of me
h.

(5) Next we calculate the ratios Re
l ¼

me

ll

me

hhh
and Re

h ¼
me

lh

me

hhh
.

(6) Using the measured slopes of me
ll and me

hhh with

respect tome
l , by comparing Re

l to the corresponding

value RM
l at the matching point we obtain an up-

dated estimate of me
l .

(7) Similarly, by comparing the ratio Re
h to RM

h we

obtain an updated estimate of me
h.

(8) With these updated estimates of the quark masses

ðml; mhÞe, we return to step 3 and iterate the steps

until the process converges.

Once this procedure has converged, we have a set of bare-

quark masses ðml; mhÞe which, in physical units, are

equivalent to the masses ðml; mhÞM. Following the discus-

sion in Sec. VA2, we choose a primary ensemble 1 and

determine the ratios of quark masses Ze
f in ensembles 1 and

e as in Eq. (30) with the corresponding ratios of lattice

spacing Ra given in Eq. (29).

In the above we assumed that for each ensemble e we

had performed simulations at several values of me
h. In our

present study the simulations were performed at a single

value of me
h and the dependence on the heavy-quark mass

is obtained by reweighting as explained in Sec. II D.

The above discussion was deliberately presented in a

general case where there are an arbitrary number of en-

sembles. In our case we only have two sets, i.e., the 243 and
323 lattices. For the primary ensemble we choose the finer

323 lattice. As we have only one other ensemble set (243),
from now on we drop the superscript on the ratios of lattice

spacings (Ra) and quark masses (Zl and Zh).

In Table XXVI we give results for Zl, Zh, and Ra

obtained by matching at several matching points on both

ensemble sets M 2 f243; 323g. Since we prefer to have a

matching point within the range of simulated data on both

ensembles, we can discard the first and last entries in the
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table. From the remaining 3 possibilities, we choose as our

final values Zl ¼ 0:981ð9Þ, Zh ¼ 0:974ð7Þ, and Ra ¼
0:7583ð46Þ from the second entry with M ¼ 323 and

ðml; mhÞ32
3 ¼ ð0:006; 0:03Þ.

Having chosen to perform the matching of the lattices at

the two lattice spacings by requiring that mll=mhhh and

mlh=mhhh take the same values at the matching point, we

expect to see lattice artefacts in ratios of other physical

quantities. This is illustrated in Fig. 26 in which we show

the ratios of several other dimensionless combinations of

lattice quantities between the two lattices at the quark

masses used in the matching procedure above. The figure

shows that we can expect only small scaling violations on

the order of 1%–2% for the other quantities used in our

global fits, and also confirms that other dimensionless

combinations of lattice quantities would be equally suit-

able choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl, Zh, and Ra determined as

described in the previous section we are ready to perform a

simultaneous fit of all our pion, kaon and � mass and

decay constant data to either the NLO forms in chiral

perturbation theory, Eq. (41) to Eq. (45), or the analytic

forms Eq. (49) to Eq. (55). We also correct for finite-

volume (FV) effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume

sum of Bessel functions [49]. The iterative procedure is

the same for each of these three fit ansätze. For each

iteration i, we:
(1) estimate the physical strange-quark masses, mi

s,

from the (i� 1)-th iteration;

(2) interpolate and reweight the data to mi
s;

(3) fit the mx, my, ml dependence of the light pseudo-

scalar mass and decay constant;

(4) fit the mx, ml dependence of kaon quantities at

mh ¼ mi
s;

(5) fit the ml dependence of the Omega mass for mh ¼
mi

s;

(6) by comparing to the physical values of m�=m� and

mK=m�, determine the iterated predictions for the

physical strange-quark masses miþ1
s .

This process is repeated until it converges and a self con-

sistent set of quark masses, lattice spacings, and results in

the continuum limit are obtained.

For the fits based on NLO chiral perturbation theory we

use Eqs. (41) and (42) for the pion mass and decay con-

stant, respectively, and Eqs. (44) and (47) for the kaon mass

and decay constant. In our earlier work [1] we found that

we had to apply cuts to keep the pion mass below around

420 MeV in order for NLO SU(2) ChPT to give an accept-

able description of our data. All the additional data intro-

duced in this work satisfies this cut and we include all the

data for pions with valence masses mx, my 	 0:01 on the

two 243 ensembles and all data for pions with valence

masses mx, my 	 0:008 for the three 323 ensembles. For

kaons we include all the valence light-quark masses in the

above range for each fixed strange-quark mass. For this

infinite-volume SU(2) NLO global fit the fitted parameters

are presented in the second column of Table XXVII. The

�2=dof for all the fits discussed here are given in

Table XXVIII. We also perform the corresponding fits

using the finite-volume chiral logarithm composed of a

sum of Bessel functions [49]; resummed expressions are

not available for our partially quenched fits. The parame-

ters of the fit are presented in the third column of

Table XXVII. In terms of the conventional LECs �l3 and
�l4 the results are

�l 3¼2:82ð16Þ; �l4¼3:76ð9Þ ðInfinite VolumeChPTÞ;
(59)

�l 3¼2:57ð18Þ; �l4¼3:83ð9Þ ðFinite VolumeChPTÞ:
(60)

In Table XXIX we present the parameters of the fit with

the analytic ansatz over the same mass range as for the fits

using SU(2) chiral perturbation theory, as explained in the

previous paragraph. We find that analytic fits including a
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FIG. 26 (color online). Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323 and 243

lattices at the matching point corresponding to ml ¼ 0:006, mh ¼ 0:03 on the 323 lattice. A value of unity indicates perfect scaling.

The ratiosmll=mhhh andmlh=mhhh (and consequentlymll=mlh) are defined to scale perfectly at these quark masses as a consequence of

our choice of scaling trajectory.
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larger range of pseudoscalar masses give an acceptable

uncorrelated �2=dof but then the lightest data points

were consistently missed by the fit by about 1 standard

deviation. The utility of such extended fits for extrapolat-

ing to the physical point was therefore compromised and

we decided to restrict the range of masses used in the

analytic fits.

The global fit to many ensembles of partially quenched

data is naturally a high dimensional space and so the

exposition of the fits is best performed by looking at

portions of the data in turn. In order to illustrate the quality

of the fits, in the following subsections we display the fit

and data for each physical quantity in turn. In total we have

analyzed five ensembles at two lattice spacings, and each

ensemble has measurements at many partially quenched

valence-quark masses. As it is only feasible to present a

subset of possible plots, in the following we display the

dependence of each quantity on the valence-quark masses

at the lightest sea-quark mass (ml ¼ 0:005 for the 243

ensembles and ml ¼ 0:004 on the 323 ensembles). The

exception of course, is the mass of the Omega baryon

mhhh which does not depend on the light valence-quark

masses. We also display the unitary subset of data on both

lattice spacings along with the mass dependence we infer

from our fits in the unitary continuum limit.

Before discussing the chiral and continuum behavior of

hadronicmasses and decay constants in detail, we present in

Table XXX our results for the unrenormalized physical

quark masses and the lattice spacings obtained from the

three fits. In this table the quark masses are given in lattice

units. The nonperturbative renormalization of the masses

will be discussed in Sec. VI where the values of the renor-

malized quark masses in theMS scheme will be presented.

1. Chiral and continuum behavior of the � baryon

The � mass is fitted using Eq. (45) [or equivalently

(55)]. The fit form for the � baryon does not change

between the different ansätze and only very small differ-

ences arise from the different estimates of physical quark

masses and hence of the lattice spacings. For illustration,

Fig. 27 shows the extrapolation of the � mass using the

analytic ansatz.

2. Chiral and continuum behavior of the pion mass

We display the fits of the partially quenched pion masses

using infinite-volume NLO SU(2) partially quenched

ChPT [i.e. to the partially quenched generalization of

TABLE XXVIII. Fit ansatze, mass ranges, and uncorrelated

�2=dof obtained in our analyses are shown. The fits were

performed for pion masses less than 420 MeV.

Ansatz �2=dof

NLO 0.72(46)

NLO-fv 1.07(47)

Analytic 0.60(44)

TABLE XXIX. Parameters of the global fit to our ensembles

using the analytic ansatz. The parameters are defined in Eqs. (49)

–(55).

Parameter Value Parameter Value

C
m�

0 �0:001ð1Þ GeV2 C
mK

1 3.67(4) GeV

C
m�

1 7.45(9) GeV C
mK

2 0.7(1) GeV

C
m�

2 0.43(8) GeV C
fK
0 0.149(2) GeV

C
f�
0 0.123(2) GeV CfK 0:02ð6Þ GeV2

Cf� 0:04ð7Þ GeV2 C
fK
1 0.34(1)

C
f�
1 0.85(2) C

fK
2 0.52(10)

C
f�
2 0.56(9) C

m�

0 1.666(2) GeV

C
mK

0 0:2353ð8Þ GeV2 C
m�

2 2.7(9)

TABLE XXX. Unrenormalized physical quark masses in lat-

tice units and the values of the inverse lattice spacing a�1 for the

323 and 243 ensembles are shown.

NLO NLO fv Analytic

~mlð323Þ 0.001 00(3) 0.001 02(3) 0.001 05(6)

~msð323Þ 0.0280(7) 0.0280(7) 0.0279(7)

a�1ð323Þ 2.280(28) GeV 2.281(28) GeV 2.282(28) GeV

~mlð243Þ 0.001 34(4) 0.001 36(4) 0.001 41(9)

~msð243Þ 0.0379(11) 0.0379(11) 0.0378(11)

a�1ð243Þ 1.729(25) GeV 1.729(25) GeV 1.730(25) GeV
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FIG. 27 (color online). The fit to the light-quark mass behavior

of the �-baryon in the continuum limit obtained using the

analytic ansatz. The corresponding plots using the infinite and

finite-volume SU(2) ChPT ansatz are almost indistinguishable,

differing only slightly in the estimates of the physical quark

masses and the lattice spacings. Of the five data points, the first,

third, and fourth from the left (denoted in red) correspond to the

323 ensembles and the remaining 2 (denoted in blue) correspond

to the 243 ones.
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Eq. (38) given in Eq. (B.32) of Ref. [1] ] in Fig. 28 for the

lightest 243 and 323 ensembles. As discussed in Sec. VC,

we divide by the average valence-quark mass with the

intention of enhancing the visibility of chiral logarithms.

Figure 29 displays the corresponding fit of the same data

but including finite-volume corrections.

It is apparent that the infinite-volume and finite-volume

NLO fits diverge rapidly from our data at larger masses,

and this indeed is the reason why we were compelled to

introduce the upper cutoff of 420 MeV for this analysis [1].

We now consider the chiral extrapolation of the pion

mass using the analytic form of Eq. (49) which is shown in

Fig. 30. Comparing Figs. 28 and 29 with Fig. 30 suggests

that data at substantially larger masses can be described by

the analytic expansion, without any curvature terms in the

ansatz. The division by the average valence-quark mass in

the plots, coupled to allowing the tangent not to pass

through the origin (i.e. that the extrapolated m2
� at

mx ¼ my ¼ 0may not be equal to zero) allows the analytic

fit to reproduce a structure that might otherwise be attrib-

uted to chiral logarithms.

We emphasize that admitting the possibility that the

constant term Cm�

0 � 0 allows for a pole in Fig. 30 in the

unitary chiral limit. In fact we find that Cm�

0 is numerically

small and consistent with zero, Cm�

0 ¼ �0:001ð1Þ GeV2.

We stress again that while Goldstone’s theorem implies the

vanishing of the pion mass in the SU(2) chiral limit, this

does not necessarily imply that C
m�

0 ¼ 0. Our model is that

the linear ansatz is valid in the region between that where

we have data and the physical point, and that if Cm�

0 � 0
then it is the curvature due to chiral logarithms below the

physical pion mass which will force the pion mass to zero

in the chiral limit. Nevertheless, from the fits we found that

C
m�

0 is consistent with zero. This is illustrated by the flat

behavior (within the statistical precision) for the chiral

behavior of the unitary points for m2
�=ml in the continuum
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FIG. 28 (color online). Global fits obtained using infinite-volume NLO SU(2) chiral perturbation theory for the pion mass. The top-

left panel includes the partially quenched data from the ml ¼ 0:005 ensemble on the 243 lattice and the data points in the top-right

panel are from the ml ¼ 0:004 ensemble from the 323 lattice. In each case the curves correspond to the appropriate value of the lattice
spacing. The points marked by the circles were included in the fit, whereas those marked by the diamonds were not. In the bottom two

panels we zoom into the low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points
on the right). [For fixed ~mx, my decreases as ðamxyÞ2= ~mavg increases.]
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FIG. 29 (color online). Global fits for the pionmass obtained usingNLOSU(2) chiral perturbation theorywith finite-volume corrections.

In this casewe only include the points which were included in the fit (ml ¼ 0:005, 243 points on the left andml ¼ 0:004, 323 points on the
right) since the finite-volume corrections at larger masses are small. [For fixed ~mx, my decreases as ðamxyÞ2= ~mavg increases.]
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FIG. 30 (color online). Global fit curves obtained using the analytic fit ansatz (49) overlaying the simulated pion masses on the

ml ¼ 0:005, 243 ensemble (top-left) and the ml ¼ 0:004, 323 ensemble (top-right). Points marked by circles were included in the fit,

those marked by diamonds were not. The simple linear expansion replicates the entire range of lattice data reasonably well with the

description being rather better than NLO chiral perturbation theory at our larger masses. In the bottom two panels we zoom into the

low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points on the right). [For fixed

~mx, my decreases as ðamxyÞ2= ~mavg increases.]
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limit shown in the right panel in Fig. 31. Allowing for a

nonzero value of C
m�

0 does, however, lead to an amplified

error for m2
�=ml at the physical point. The left panel of

Fig. 31 shows the corresponding plots for the infinite and

finite-volume ChPT fits.

Goldstone’s theorem equally applies at vanishing

valence-quark mass (mx ¼ my ¼ 0) but with a nonzero

sea-quark mass (ml > 0). In contrast with the unitary

case discussed in the previous paragraph where C
m�

0 was

consistent with zero, in the partially quenched direction we

find that the corresponding constant Cm�

0 þ Cm�

2 ml is non-

zero, specifically Cm�

2 ¼ 0:43ð8Þ GeV. This value for Cm�

2

is much larger than might be created by propagating the

mass dependence in m0
resðmÞ through the term involving

C
m�

1 ; the greatest mass dependence in m0
res occurs on our

243 ensembles in the partially quenched direction, but can

at most generate a 1% correction to ~m and produces a term

much smaller than the measured C
m�

2 . Further, the residual

chiral symmetry breaking is 4 times smaller for the 323

ensemble which is also included in the global fit. Our

results from this global analytic fit, therefore, require a

curvature, most likely from partially quenched chiral log-

arithms which are known to be larger than in the unitary

direction, in order for Goldstone’s theorem to be satisfied.

It is also worth emphasizing that the discovery of chiral

logarithms in lattice data from plots such as those in

Figs. 28 to 30 is to a certain extent artificial.

Inconsistency with LO chiral perturbation theory is cer-

tainly indicated. Our linear fits suggest that the transfor-

mations made in displaying the data render even

conclusions of genuine curvature, let alone unambiguous

demonstration of logarithmic mass dependence, to be

somewhat optimistic. In order to prove logarithmic behav-

ior, one should really change quark masses substantially on

a logarithmic scale; our present lattice data supports only

the weaker claim of consistency with logarithmic behavior

in the partially quenched direction.

3. Chiral and continuum behavior of the

pion decay constant

We now turn to the chiral behavior of f� and the

extrapolation to the physical point. The leading term in

all the fits contains an a2 correction and we display the fits
performed at nonzero lattice spacing combined with the

unmodified lattice data and also our continuum predictions

combined with the lattice data extrapolated to the contin-

uum limit using the results of the fits.

We display our fits obtained using infinite-volume NLO

SU(2) partially quenched ChPT in Fig. 32. The correspond-

ing fits including finite-volume corrections are shown in

Fig. 33. Finally Fig. 34 displays the fits obtained using our

analytic ansatz. Having performed the fits, we adjust our

unitary data to the continuum limit using the fitting func-

tions with the determined parameters and display the

adjusted data in Fig. 35 together with the finite and

infinite-volume NLO SU(2) ChPT fits (left panel) and the

analytic fit (right panel). The effect of the adjustment to

the continuum limit is illustrated in Fig. 36 where the fits

are superimposed on the unadjusted unitary data. It can be

seen from Figs. 35 and 36 that the adjustment to the

continuum limit for the pion decay constant is very small.

The predictions for f� extrapolated to the physical

quark masses for each of the fits is given in Table XXXI.

We anticipate the discussion of the global fits for fK which

are presented in Sec. VE 6 and mention that the predictions

forfK extrapolated to the physical quarkmasses are given in

Table XXXII, and the predictions for fK=f� extrapolated to

the physical quark masses are given in Table XXXIII.
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FIG. 31 (color online). Left panel: Pion mass fit for the SU(2) NLO fit form in the continuum limit, both with and without finite-

volume logarithms. We adjust the data points to the continuum limit using the a2 dependence in our fit form and overlay these. Right

panel: Chiral extrapolation of the pion mass using the analytic (52) and infinite-volume NLO ChPT ansätze. In both panels the first,

third, and fourth data points from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue)

correspond to the 243 ones.
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FIG. 32 (color online). Global fits to the lattice data for the pion decay constant obtained using infinite-volume NLO SU(2) chiral

perturbation theory. The top-left and top-right panels correspond to the 243, ml ¼ 0:005 and 323, ml ¼ 0:004 ensembles, respectively.

Points marked by circles are included in the fits, while those with heavier masses marked by diamonds are not. In the bottom two

panels we zoom into the low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points
on the right). (For fixed ~mx, my increases as afxy increases.)
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FIG. 33 (color online). Global fits to the lattice data for the pion decay constant obtained using NLO SU(2) chiral perturbation theory

with finite-volume corrections. In this case we only include the points which were included in the fit (ml ¼ 0:005, 243 points on the left
and ml ¼ 0:004, 323 points on the right) since the finite-volume corrections at larger masses are small. (For fixed ~mx, my increases as

afxy increases.)
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FIG. 34 (color online). Global fits to the lattice data for the pion decay constant obtained using the analytic ansatz in Eq. (52). The

top-left and top-right panels correspond to the 243, ml ¼ 0:005 and 323, ml ¼ 0:004 ensembles, respectively. Points marked by circles

are included in the fits, while those with heavier masses marked by diamonds are not. In the bottom two panels we zoom into the low-

mass region, illustrating the fits to the points which were included (243 points on the left and 323 points on the right). (For fixed ~mx,my
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FIG. 35 (color online). Unitary data for f� adjusted to the continuum limit using each of the fit ansätze. The left panel compares the

infinite-volume and finite-volume forms of the NLO SU(2) fit, while the right panel compares the analytic fit to the infinite-volume

NLO SU(2) fit. The horizontal solid line indicates the value f�� ¼ 130:4 MeV [the authors of Ref. [62] quote f�� ¼ ð130:4�
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and the remaining 2 (denoted in blue) correspond to the 243 ones.
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We find that the NLO SU(2) fits underestimate the

physical value at our simulated lattice spacings, and that

this discrepancy is amplified a little by the extrapolation to

the continuum limit. At each of our two lattice spacings,

the analytic ansatz extrapolates close to the physical value

of f�, but, with our ansatz for the form of the a2 effects, the
result becomes statistically inconsistent in the continuum

limit.

From the above discussion we see that using NLO ChPT

to perform the chiral extrapolation for f� results in a value

which is significantly smaller than the physical one. We

recall that only data limited tom� < 420 MeVwas used in

the analysis and note that the fits were performed using the

chiral expansion with f, the decay constant in the SU(2)

chiral limit, included in the expansion parameter

�l=ð4�fÞ2. The downward curvature at low masses seen

in Fig. 35 can, of course, be reduced by replacing the mass-

independent f by an artificial larger parameter such as the

physical f� or fllð ~mlÞmeasured at each quark mass used in

the simulation. The curvature can also be partially ab-

sorbed by using a subset of terms that arise at NNLO.

We have experimented with NNLO fits [50] but find that

the low-energy constants are insufficiently constrained by

our data to be of practical use. Thus the resulting predic-

tions for the physical value of f� depend strongly on the

model assumptions used at NNLO.

The observedOð10%Þ deviation found using NLO chiral

perturbation theory is broadly consistent with the size of

NNLO terms one might expect to be present at masses in

the region of our data. Our data for f� vary from about

20% to 40% above the value of f obtained from our

extrapolations and the square of these terms can be taken

as being indicative of the expected NNLO terms. We might

therefore expect them to be around 5%–15% within our

simulated mass range.

The discrepancy of the prediction for the physical value

of f� from the analytic fits is smaller than that found with

NLO ChPT, but is nevertheless visible. The results at each

of the two lattice spacings are statistically consistent with

f� but lead to an underestimate in the continuum limit.

Given the sign of the chiral logarithms at NLO, one might

expect a linear ansatz to overestimate rather than under-

estimate the prediction for the physical value. It is never-

theless striking that one cannot admit any significant

nonlinearity in this extrapolation and retain consistency

with the physical value for f�. The simple analytic form

used here appears to be a successful phenomenological

model which is simpler and has fewer parameters than

approaches based on ChPTwith arbitrarily chosen analytic

subsets of NNLO and NNNLO terms.

It is of interest to pose the scientific question whether

any of the fit ansätze could in principal be consistent with

the experimentally measured pion decay constant? To

answer this question we update the analysis of Ref. [51]

and include an artificially created data point for each

ensemble that represents the experimental result in the

continuum limit but includes our fitted a2 correction at
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FIG. 36 (color online). Chiral extrapolation of the pion decay

constant using the analytic (52) and ChPT (42) fit ansätze. Here,

the lattice results from the 243 (first and fourth points from the

right denoted in blue) and 323 (remaining 3 points denoted in

red) ensembles are shown along with the mass dependence we

infer both at each lattice spacing and in the continuum limit. The

consistency of the two ensembles with each other and with this

continuum limit is indicative of the size of lattice artefacts. The

horizontal solid line indicates the value f�� ¼ ð130:4� 0:04�
0:2Þ MeV [62].

TABLE XXXII. Predictions for fK in GeV for each global fit

ansatz at each simulated lattice spacing and in the continuum

limit are shown.

NLO NLO fv Analytic

f24
3

K 0.147(2) 0.148(2) 0.152(2)

f32
3

K 0.147(2) 0.148(2) 0.151(2)

fcontinuumK 0.146(2) 0.147(2) 0.151(2)

TABLE XXXI. Predictions for f� in GeV for each global fit

ansatz at each simulated lattice spacing and in the continuum

limit are shown.

NLO NLO fv Analytic

f24
3

� 0.121(2) 0.123(2) 0.128(2)

f32
3

� 0.120(2) 0.122(2) 0.127(2)

fcontinuum� 0.119(2) 0.121(2) 0.126(2)

TABLE XXXIII. Predictions for fK=f� for each global fit

ansatz at each simulated lattice spacing and in the continuum

limit are shown.

NLO NLO fv Analytic

ðfK=f�Þ24
3

1.216(9) 1.205(9) 1.184(9)

ðfK=f�Þ32
3

1.221(6) 1.209(6) 1.188(6)

ðfK=f�Þcontinuum 1.229(8) 1.215(7) 1.194(7)
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FIG. 37 (color online). An artificial data point (the left-most data point in each panel) corresponding to the physical value off� [62], but
including our uncertainties in the lattice spacing, is added to the data for the pion decay constant from the five ensembles. The left-hand

panel corresponds to theNLOSU(2)ChPTfits and the right-hand panel to the analytic ansatz. In both panels the first, third, and fourth data

points from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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FIG. 38 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using infinite-

volume NLO partially quenched ChPT. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from

the 323, ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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FIG. 39 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using finite-volume

NLO partially quenched ChPT. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323,
ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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FIG. 40 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using the analytic fit

ansatz. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004 ensemble. In

each case the results are for the physical strange-quark mass.
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FIG. 41 (color online). Chiral extrapolation of the kaon mass using unitary data points adjusted to the continuum limit by the fitting

ansätze. Here we compare results obtained using the infinite-volume NLO ChPT ansatz to that using finite-volume logarithms (left

panel) and to the analytic ansatz (right panel). In both panels the first, third, and fourth data points from the left (denoted in red)

correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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FIG. 42 (color online). Dependence of the kaon decay constant on the mass of the light valence quark with fits performed using

infinite-volume partially quenched NLO ChPT. The left panel shows the results from the 243,ml ¼ 0:005 ensemble and the right panel

from the 323, ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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each nonzero lattice spacing. This is displayed in Fig. 37

and we find that the analytic ansätze could be consistent

with an uncorrelated �2=dof ¼ 1:9ð7Þ, while NLO ChPT

would fail to simultaneously fit our data and the physical

point, with �2=dof ¼ 6ð1Þ (infinite volume) and �2=dof ¼
5ð1Þ (finite volume).

Of course, improved statistical errors, simulations at a

third lattice spacing and larger physical volumeswould give

us better control of the continuum extrapolation

and finite-volume effects. However, our main conclusion

is that it is imperative to simulate with masses substantially

nearer to the physical point; this will constrain both fit forms

to give more consistent predictions. Ultimately simulations

will be performed directly at physical quarkmasses andwill

eliminate this error completely.We are currently generating

new ensembles with a coarser lattice spacing, with a sub-

stantially larger volume and with very much lighter pion

masses (for a preliminary discussion of these configurations

see Ref. [52]) precisely to address this issue.

As an estimate of the systematic uncertainties in physi-

cal quantities we take the difference between the results

obtained using linear and finite-volume NLO ChPT analy-

ses. This allows for the possible validity of the full NLO

nonanalyticity in the region of masses between the data and

the physical point but also recognizes that part of this

extrapolation may be outside the range of validity of
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FIG. 43 (color online). Dependence of the kaon decay constant on the mass of the light valence quark. The left panel shows the

results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004 ensemble. In each case the results are for the

physical strange quark mass. There are two curves plotted. The orange curve which turns up at low masses is the result one infers for

the infinite volume, while the red curve which turns down at low masses is the result we obtain on the finite volume. As we do not

adjust our data for finite volume effects, the finite-volume curve should go through our data. The infinite-volume curve also goes

through our data which is an indication that the finite-volume effects in our data are substatistical, and the difference between the two

curves at lighter masses indicates that one should expect substantial finite-volume effects if one were to simulate at these lighter masses

without changing our present volume.
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FIG. 44 (color online). Dependence of the kaon decay constant on the mass of the light valence quark with fits performed using the

analytic fit ansatz. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004
ensemble. In each case the results are for the physical strange-quark mass.
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NLO ChPTas suggested by the observation that the present

data is surprisingly consistent with linear behavior. Guided

by the results for f� discussed above, we take as our central

values for phenomenological predictions the average of the

results obtained from our finite-volume NLO ChPT fits and

our analytic fits.

4. Chiral and continuum behavior

of the mass of the kaon

We display our fits using infinite-volume NLO SU(2)

partially quenched ChPT in Fig. 38. Figure 39 displays the

corresponding fits of the same data with the finite-volume

corrections included, while the analytic fits are displayed in

Fig. 40. The corresponding unitary view of the data in the

continuum limit is shown in Fig. 41. All these plots are for

results at the physical sea strange-quark mass.

5. Chiral and continuum behavior of fK

We next discuss fK, the decay constant of the kaon. We

display our fits using infinite-volume NLO SU(2) partially

quenched ChPT in Fig. 42. The following two figures dis-

play fits of the same partially quenched data to ChPTwith

finite-volume corrections (Fig. 43) and to the global ana-

lytic fit ansatz (Fig. 44). The NLO ChPT fit ansätze, both

with and without finite-volume logarithms, are displayed

for the unitary data adjusted to the continuum limit in

Fig. 45.

The two panels in Fig. 46 display the chiral behavior of

the actual unitary data from the two sets of ensembles (left

panel) as well as of the data adjusted to the continuum limit

(right panel).

From these fits our final predictions for fK are given in

Table XXXII, and the corresponding results for fK
f�

in

Table XXXIII.

6. Predictions

We now present our results for f�, fK and their ratio as

well as for the physical bare-quark masses. As discussed

above, our central value for any physical quantity is taken

to be the average of the results obtained from analyses

using the NLO SU(2) ChPT fit with finite-volume correc-

tions and those from the analytic fit. The difference be-

tween the analytic and finite-volume NLO SU(2) fits is

taken as a systematic error. This procedure includes a NLO

finite-volume correction, estimated from the difference

between results obtained using NLO ChPT at infinite and
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FIG. 46 (color online). Chiral extrapolation of the kaon decay constant for unitary data in the continuum limit. We compare the NLO

ChPT ansatz to the analytic ansatz. The left panel displays the data and fits at nonzero lattice spacing, while the right panel displays the

predicted results and correspondingly adjusted data points for the continuum limit. In both panels the first, third, and fourth data points

from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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finite volumes, and which is much smaller than the total

systematic error here.

Our predictions for pseudoscalar decay constants there-

fore contain systematic errors for finite-volume effects, the

chiral extrapolation, and residual chiral symmetry break-

ing, while the discretization error is included indirectly by

the fitting procedure:

fcontinuum� ¼ 124ð2Þð5Þ MeV; (61)

fcontinuumK ¼ 149ð2Þð4Þ MeV; (62)

ðfK=f�Þcontinuum ¼ 1:204ð7Þð25Þ; (63)

where we display the statistical and systematic errors

separately. We note that the known, experimental value

of f� influenced our choice to take the central value of

physical quantities as the average of the results from the

analytic and finite-volume NLO ChPT ansätze. The pre-

diction for f� cannot therefore be considered unbiased,

however, as our aim is to select the most likely central

value for phenomenologically important quantities such as

fK=f� and BK our procedure is both appropriate and

contains a prudent systematic error.

Applying the same procedure to obtain predictions for

the physical bare-quark masses for the � ¼ 2:25 323 en-

sembles, we find:

~mud ¼ 2:35ð8Þð9Þ MeV and ~ms ¼ 63:7ð9Þð1Þ MeV;

(64)

and these will be renormalized in the following section.

The corresponding bare masses for the � ¼ 2:13 243 en-

sembles can be obtained by dividing the results in (64) by

the values of Zl and Zh in Table XXVI.

7. Chiral and continuum behavior of r0 and r1

Finally, in this section we apply the combined chiral/

continuum extrapolation procedure to the scales r0 and r1.
Assuming a linear dependence for the light sea-quark mass

dependence, and including a leading-order a2 term as

before, the scales are independently fit to the form

ri ¼ cri þ cri;aa
2 þ cri;ml

~ml; (65)

where i ¼ 0, 1. Prior to the fit, the data are linearly inter-

polated to each of the physical strange-quark masses ob-

tained from the global fits and presented in Table XXX,

and the fit and the subsequent extrapolation are performed

using the corresponding physical light-quark mass and

lattice spacings.

The parameters and �2=d:o:f of the fits are given in

Tables XXXIVand XXXV, respectively, and plots showing

the fits overlaying the data in the continuum limit are

shown in Fig. 47. The fits to r0 appear to describe the

data well by eye, and have a reasonable (uncorrelated)

�2=d:o:f for the central value, but with a large deviation

across the superjackknife distribution. The fits to r1 also

appear to describe the data reasonably well, although there

does seem to be a tension with the heaviest point on the 243

ensembles, which is likely responsible for the larger

�2=d:o:f. As there are only five data points it is difficult

TABLE XXXV. �2=d:o:f of the chiral/continuum fits to r0 and r1 is shown.

Quantity ChPT ChPT-fv Analytic

r0 1.35(1.66) 1.34(1.65) 1.31(1.63)

r1 2.69(2.39) 2.68(2.38) 2.66(2.37)

TABLE XXXIV. Parameters of the chiral/continuum fits to r0 and r1 are shown.

(a) r0
Parameter ChPT ChPT fv Analytic

cr0 2:468ð41Þ GeV�1 2:468ð41Þ GeV�1 2:467ð41Þ GeV�1

cr0;a �0:25ð14Þ GeV �0:25ð14Þ GeV �0:25ð14Þ GeV
cr0;ml

0:42ð1:23Þ GeV�2 0:44ð1:23Þ GeV�2 0:47ð1:23Þ GeV�2

(b) r1
Parameter ChPT ChPT-fv Analytic

cr1 1:694ð29Þ GeV�1 1:694ð29Þ GeV�1 1:693ð29Þ GeV�1

cr1;a �0:15ð11Þ GeV �0:15ð11Þ GeV �0:15ð12Þ GeV
cr1;ml

�1:76ð64Þ GeV�2 �1:76ð64Þ GeV�2 �1:76ð64Þ GeV�2
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to reach any stronger conclusions regarding the data: more

ensembles and better statistics are needed. For the purpose

of quoting a final result, we apply a PDG scale factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=d:o:f
p

to the statistical errors on each of the results. In

order to retain the correlations between these quantities

when the ratio is taken, the scale factor is applied to the

difference of each jackknife sample from the mean.

The continuum results for r0, r1 and their ratio at physi-

cal quark masses are given in Table XXXVI. Using the

procedure for combining the results obtained using the

different chiral ansätze outlined in Sec. VE 3 and applying

the PDG scale factor as above, gives

r0 ¼ 2:468ð45Þstatð1ÞFVð1Þ� GeV�1

¼ 0:4870ð89Þstatð2ÞFVð2Þ� fm;

r1 ¼ 1:689ð47Þstatð0ÞFVð1Þ� GeV�1

¼ 0:3333ð93Þstatð1ÞFVð2Þ� fm;

and r1=r0 ¼ 0:684ð15Þstatð0ÞFVð0Þ�;

(66)

where the finite-volume error arising from the different

determinations of the lattice spacings and quark masses is

smaller than the quoted precision on the ratio. � labels

the error due to the chiral extrapolation. For comparison,

the MILC Collaboration recently obtained r1 ¼
0:3117ð6Þðþ12

�31Þ fm [ ’ 1:580ð3Þðþ6
�16Þ GeV�1] [53], and

also r1 ¼ 0:317ð7Þð3Þ fm [ ’ 1:61ð4Þð2Þ GeV�1] and r0 ¼
0:462ð11Þð4Þ fm [ ’ 2:34ð6Þð2Þ GeV�1] from an earlier

study [54]. At this time we do not have an explanation of

the discrepancy between our results in (66) and those of the

MILC Collaboration beyond noting the very different ap-

proaches to setting the scale and performing the chiral

extrapolation.

VI. LIGHT-QUARK MASSES

The quark masses quoted in Eq. (64) are the bare masses

for the lattice action which we are using on the 323 ensem-

bles with � ¼ 2:25 corresponding to a lattice spacing

a�1 ’ 2:28 GeV. In order to be useful in phenomenologi-

cal applications these results must be translated into re-

normalized masses in some standard continuum scheme.

Therefore in Sec. VIA we determine the renormalization

constants relating the bare masses in (64) to those renor-

malized in the MS scheme at a renormalization scale of

2 GeV. In Sec. VIB we then combine these renormaliza-

tion constants with the bare masses in (64) to obtain the

renormalized masses, the LO LEC BMSð2 GeVÞ and the

chiral condensate.
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FIG. 47 (color online). The scales r0 (left) and r1 (right) corrected to the continuum limit, overlaid by the chiral/continuum fit. Of the

five data points, the first, third and fourth from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted

in blue) correspond to the 243 ones. The extrapolated point at the physical light-quark mass is shown as the grey cross on the left. Here

the lattice spacings and physical light-quark mass were obtained from the global fits using the analytic ansatz. The fits using the

quantities obtained with the ChPT and ChPT-fv global fit ansätze are almost indistinguishable from those shown in these figures.

TABLE XXXVI. Continuum values of r0 and r1 and the ratio r1=r0 at physical quark masses

determined from a chiral/continuum fit using the lattice spacings and quark masses obtained

from the global fits are shown.

Quantity ChPT ChPT-fv Analytic

r0 2:469ð39Þ GeV�1 2:469ð39Þ GeV�1 2:468ð39Þ GeV�1

r1 1:690ð29Þ GeV�1 1:690ð29Þ GeV�1 1:689ð29Þ GeV�1

r1=r0 0.6844(96) 0.6844(97) 0.6843(97)
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A. Nonperturbative renormalization for quark masses

The quark mass renormalization factor which relates the

lattice bare quark mass to that in the MS scheme is deter-

mined using nonperturbative renormalization (NPR) with

the RI/SMOM schemes proposed in Ref. [15] as intermedi-

ate schemes. This is an extension of the Rome-

Southampton NPR program in which the RI/MOM scheme

was defined [45]. Quark masses renormalized in the sym-

metric MOM scheme (RI/SMOM) defined in [15] or the

original RI/MOM scheme [45] are obtained entirely non-

perturbatively. Since it is not possible to simulate in a

noninteger number of dimensions, continuum perturbation

theory is needed tomatch the results in either the RI/SMOM

or the RI/MOM scheme and the target MS scheme. We

stress however, that we completely avoid the use of lattice

perturbation theory which often converges more slowly

than continuum perturbation theory (PT). Since RI/MOM

and any of the schemes proposed in [15] are legitimate

renormalization schemes, we exploit the freedom to choose

an intermediate scheme to reduce its effect on the final

result for the renormalized quark mass in the MS scheme

and to have a better understanding of this uncertainty.

Our earlier study [14], used to normalize the quark mass

on the 243 ensembles, applied the RI/MOM scheme to

renormalize the quark masses and suffered from sizable

systematic errors with two dominant sources. One of these

is the truncation error in the perturbative continuummatch-

ing between the RI/MOM and MS schemes. This was

estimated to be 6% for � ¼ 2 GeV from the relative size

of the highest-order term used (3 loop). The other is a

nonperturbative effect arising because the strange-quark

mass is fixed close to its physical value, and the chiral limit

is not taken for this quark. We estimated the corresponding

systematic error on the quark mass renormalization factor

for a�1 ¼ 1:73 GeV and � ¼ 2 GeV to be about 7%. As

the strange-quark mass and the typical scale of spontane-

ous chiral symmetry breaking are almost the same, this

error can be viewed as a general error due to contamination

of nonperturbative effects (NPE). It was shown in Ref. [14]

that changing the kinematics of momenta used to define the

NPR scheme greatly reduces the contamination from un-

wanted nonperturbative effects and this will be discussed

below. The actual implementation of the schemes with

unconventional kinematics has been done in Ref. [15] care-

fully ensuring that the Ward-Takahashi chiral identities are

satisfied. A pilot study [55] using the new schemes dem-

onstrated that it is a promising alternative to the conven-

tional RI/MOM scheme with reduced systematic errors. In

the present article we use two RI/SMOM schemes pro-

posed in Ref. [15]. Preliminary results have been reviewed

in Ref. [56].

An important technical improvement introduced since

the previous study [14] is the use of volume momentum

sources for the quark propagators. This helps to reduce

the statistical error greatly and in addition reduces the

systematic error due to the dependence on the position of

the local source used in [14]. More details about the use of

momentum sources can be found in Ref. [35].

The mass renormalization factor Zm is conveniently

calculated using the relation

Zm ¼ 1=ZS ¼ 1=ZP; (67)

where Zm, ZS, ZP are the quark mass, flavor nonsinglet

scalar, and pseudoscalar renormalization factors, respec-

tively. Here we are exploiting the important chiral symme-

try properties of DWF. Our convention is that the

renormalization factors multiply the bare quantities to

yield renormalized ones:

mR¼Zm ~m; Pa
R¼ZPP

a; SaR¼ZSS
a; (68)

where the left-hand sides are the renormalized mass, pseu-

doscalar and scalar densities, and a is a flavor label. ~m in

Eq. (68) is in physical units. The relations in Eq. (67) are

necessary for the Ward-Takahashi identities to hold for the

renormalized operators. The RI/MOM renormalization

condition on the amputated scalar vertex �S reads

ZS

Zq

1

12
Tr½�S � I� ¼ 1: (69)

Zq is the wave function renormalization factor, which can

be determined using the trace condition on the local vector

operator,

ZV

Zq

1

48
Tr½�V�

� ��� ¼ 1: (70)

The vertex functions � depend on the incoming and out-

going momenta on the two fermion lines,�ðpin; poutÞ. The
conventional RI/MOM scheme is defined using the for-

ward vertex with pin ¼ pout ¼ p. The renormalization

conditions, Eqs. (69) and (70), are applied by setting the

renormalization scale � to be the off-shell external mo-

mentum, �2 ¼ p2, in the chiral limit.

It is in principle possible to determine ZSð¼ ZPÞ using
the pseudoscalar vertex function instead of the scalar one

in Eq. (69). However, with the original RI/MOM choice for

the external momenta, the pseudoscalar vertex couples to

the zero-momentum pion, and the Green function diverges

as 1=mq as the quark mass mq ! 0 at fixed p [57].

Therefore the pseudoscalar vertex cannot be used without

some manipulation of the divergence (see, e.g., [58]) and

has not been considered in our previous publication [14].

This is in contrast with the RI/SMOM schemes described

below which do not have such a pole asmq ! 0. Similarly,

the axial-vector vertex can be used to determine Zq be-

cause ZV ¼ ZA. However, Zq obtained using the vector and

axial-vector vertices at large but finite p2 will differ be-

cause of the coupling of the axial current to the Goldstone

boson [45]. These differences are known to be of Oð1=p2Þ
at high momentum from the operator product expansion

[45,57] or from Weinberg’s theorem of power counting for

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-49



a Feynman diagram [14]. In Ref. [14], the average of the

vector and the axial-vector vertex was used to determine

Zq and the difference was included in the systematic error,

though the corresponding 1% error is subdominant.

The caveats mentioned in the two preceding paragraphs

are both connected to the RI/MOM scheme and its channel

with an ‘‘exceptional momentum’’; specifically, the mo-

mentum transfer q � pin � pout ¼ 0. This is the reason for
the large NPE error. It was demonstrated that the use of

nonexceptional momenta pin � pout � 0 reduces the NPE

effect significantly. The RI/SMOM schemes are designed

so that all channels have nonexceptional momenta. For

quark bilinear operators we choose to have p2
in ¼ p2

out ¼
q2 and hence introduce the name ‘‘symmetric MOM’’

(SMOM) schemes. The two schemes RI/SMOM and

RI=SMOM��
are defined with this kinematical choice

but differ in the �-projection operators which are used to

define the wave function renormalization. For the vector

(axial-vector) vertex function the projector qq�=q
2

(�5qq�=q
2) is used in the RI/SMOM scheme and ��

(�5��) as in Eq. (70) is used for RI=SMOM��
. The

standard I (�5) spinor projector is used for the scalar

(pseudoscalar) vertex in both new schemes.

The conversion factors from the RI/SMOM and

RI=SMOM��
schemes to MS have been calculated at

one-loop order in Ref. [15] and recently to two-loop order

[16,17]:

CmðRI=SMOM ! MS; �Þ

¼ 1�
�

sð�Þ
4�

�

0:646

�
�

sð�Þ
4�

�
2
ð22:608þ 4:014nfÞ . . . ; (71)

CmðRI=SMOM��
!MS;�Þ

¼1�
�

sð�Þ
4�

�

1:979�
�

sð�Þ
4�

�
2
ð55:032þ6:162nfÞ . . . ;

(72)

where the coefficients have been rounded to the third

decimal place. Evaluating these factors at � ¼ 2 GeV
we have

CmðRI=SMOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:015� 0:006 . . . ; (73)

CmðRI=SMOM��
! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:046� 0:020 . . . : (74)

In the RI/MOM and RI0=MOM schemes the conversion

factors are known to three-loop order [59,60]:

CmðRI=MOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:123� 0:070� 0:048þ . . . ;

(75)

CmðRI0=MOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:123� 0:065� 0:044þ . . . :

(76)

We note that, at least up to two-loop order, the convergence

of the series relating the new SMOM schemes to MS is

considerably better than for the RI/MOM scheme. As al-

ready mentioned, the truncation error of the RI/MOM

scheme was estimated from the size of the highest-order

term available (3 loop). Having, in addition, two inter-

mediate SMOM schemes, we can expect to have a more

reliable estimate of the truncation error.

We now turn to the numerical evaluation of the renor-

malization factors. At each value of �, we use data ob-

tained at the three light-quark masses: ml ¼ 0:004, 0.006,
and 0.008 for the finer 323 lattice and ml ¼ 0:005, 0.01,
and 0.02 for the coarser 243 lattice. 20 configurations

were analyzed for each point. The ratio of quark wave

function and local axial current renormalization factors is

calculated from the average of vector and axial-vector

vertex functions,

Zq

ZV

¼ 1

2
ð�V þ�AÞ; (77)

with projected and traced vertex functions:

�RI=SMOM
V ¼ 1

12q̂2
Tr½�V�

�q̂ q̂�� and

�RI=SMOM
A ¼ 1

12q̂2
Tr½�A�

� �5 q̂ q̂��; (78)

for the RI/SMOM scheme. Here q� in the continuum RI/

SMOM scheme [15] has been replaced with the q̂� ¼
sinðq�Þ, as the derivative for the divergence of the current
in the continuum theory is naturally replaced by the sym-

metric difference on the lattice. A remarkable feature of the

RI/SMOM scheme is that in the chiral limit �V ¼ �A

holds nonperturbatively, in contrast to �V � �A for the

RI/MOM scheme due to spontaneous symmetry breaking.

In principle there could still be a small difference for the

lattice RI/SMOM scheme with nonzero mres, which, how-

ever, is negligible in the momentum range we use [55].

Using the continuum Ward-Takahashi identities, one can

also show the equivalence of Zq in the RI/SMOM and

RI0=MOM schemes [15].

The RI=SMOM��
scheme is defined using the conven-

tional projectors,
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�
RI=SMOM��

V ¼ 1
48Tr½�V�

� ��� and

�
RI=SMOM��

A ¼ 1
48Tr½�A�

� �5���: (79)

Although these projectors are superficially the same as

those used in the RI/MOM scheme, it should be remem-

bered that the kinematics is different in the two cases with

no exceptional channels in the Green functions used to

define the RI=SMOM��
scheme.

The product of mass and wave function renormalization

factors is calculated from the average of scalar and pseu-

doscalar vertex functions,

ZmZq ¼ 1
2ð�S þ�PÞ; (80)

with

�S ¼ 1
12Tr½�S � 1� and �P ¼ 1

12Tr½�P � �5�; (81)

again defined with the SMOM kinematics for the vertex

functions. While �S ¼ �P holds to all orders in perturba-

tion theory with naive dimensional regularization, by using

Weinberg’s power-counting scheme we see that they can in

general differ by terms of Oð1=p6Þ [14]. The difference

�P ��S after the chiral extrapolation is plotted in Fig. 48

as a function of p2 (in physical units) for both the 243 and
323 lattices. The figure confirms the expected approximate

1=p6 scaling. The unwanted nonperturbative effect from

spontaneous symmetry breaking is small and the introduc-

tion of nonexceptional momenta has had the expected

effect. This is in contrast to the RI/MOM scheme with

the exceptional channel, where the same difference be-

haves as 1=ðmp2Þ, and thus diverges in the chiral limit at

finite p2.

The mass renormalization factor Z	
m, with 	 ¼

RI=SMOM or RI=SMOM��
, is given by combining

Eqs. (77) and (80),

Z	
m ¼ 1

ZV

�S þ�P

�	
V þ�	

A

: (82)

In calculating the ratio of vertex functions in Eq. (82) we

take the average of S and P or V and A for each light-quark

mass and then fit with a quadratic [cþ c0ðml þmresÞ2]
or linear [cþ c00ðml þmresÞ] formula to obtain the value

c in the chiral limit for the numerator and denominator. For

illustration, the extrapolation for the numerator using the

quadratic formula is shown in Fig. 49, where the observed

mass dependence is seen to be very small. Because of the

very mild mass dependence, to the precision with which we

quote our results and errors, the quadratic and linear ex-

trapolation formulas lead to exactly the same quark mass

renormalization factor and error. Finally, taking the ratio

and combining with ZV gives the mass renormalization

factor in the RI/SMOM schemes. The renormalization

factor in theMS scheme at a scale � ¼ 2 GeV is obtained

by first matching the scheme 	 to MS at �2 ¼ p2
in ¼

p2
out ¼ q2 using Eqs. (71) and (72) and then running to

2 GeV using the three-loop anomalous dimension in the

MS scheme. We use the four-loop QCD beta functions [61]

to calculate 
ð3Þ
s ð�Þ for running and matching as shown in

Appendix A of Ref. [14]. The relevant parameters taken

from the 2008 Particle Data Group [62] are


ð5Þ
s ðmZÞ ¼ 0:1176; mZ ¼ 91:1876 GeV;

�mb ¼ 4:20 GeV; and �mc ¼ 1:27 GeV; (83)

where the quark masses are in the MS scheme at the scale

of the mass itself, e.g., �mb ¼ mMS
b ð �mbÞ.

In Fig. 50 we plot Z
SMOM��
m ð�Þ and ZSMOM

m ð�Þ in the SU
(2) chiral limit as functions of �2 ¼ p2 for the 323 ensem-

bles. In addition we also plot ZMS
m ð2 GeVÞ as functions of
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FIG. 48 (color online). �P ��S as a function of p2 [GeV2]

for fine (323) and coarse (243) lattices. A straight line with 1=p6

slope but arbitrary normalization is drawn to guide the eye.
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FIG. 49 (color online). The chiral extrapolation of ð�P þ
�SÞ=2 for the fine (323) lattice for each p2 point is shown.
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the matching scale p2 obtained with SMOM and SMOM��

as the intermediate schemes. In an ideal situation, i.e., one

in which the errors due to NPE contamination, truncation

of perturbation theory and lattice artifacts are all small, the

results obtained using the two intermediate schemes would

give the same results for ZMS
m ð2GeVÞ, and the results would

be independent of ðpaÞ2. Since we have observed that the

NPE error is small, the difference between the two sets of

results is mostly due to the truncation of perturbation

theory and lattice discretization errors. The observed de-

crease in this difference as p2 increases is consistent with

the expected behavior of the truncation error. Conversely,

since the truncation error increases as p2 decreases, taking

the limit ðpaÞ2 ! 0, which is a typical treatment to elimi-

nate the discretization error, is not an appropriate proce-

dure. We therefore choose instead to evaluate Zm by taking

an intermediate reference point p2 ¼ ð2 GeVÞ2, for both
the 243 and 323 lattices. In this way, as we take the

continuum limit of the renormalized quark mass, the lead-

ing ðpaÞ2 discretization error associated with the nonper-

turbative renormalization will be removed.

There is a subtlety due to lattice artefacts which are not

Oð4Þ invariant and which are responsible for the non-

smooth ðpaÞ2 dependence in the figure. A term like

a2
P

�ðp�Þ4=p2, whose presence has been demonstrated

in the conventional RI/MOM scheme for Wilson quarks

[63], could exist also in the SMOM schemes. Such a term

would manifest itself as scattered data around a smooth

curve in p2, and the size of the scatter is expected to be

comparable to the leading ðpaÞ2 error as both are of the

same order in a2. This appears to be compatible to what is

shown in the figure. Of course, it would be very helpful to

know these terms, but in the absence of this knowledge we

include this scatter in the systematic error by inflating the

error by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=dof
p

. The results are

ZMSð32Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:573ð2Þ;
(84)

ZMSð32Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:541ð7Þ: (85)

The final arguments on the left-hand sides denote the

choice of intermediate scheme. The error on the right-

hand sides is the combination of the statistical fluctuations

and the scatter of the points around the linear fit. The

central values and errors are shown in the figure at the

reference point, p2 ¼ ð2 GeVÞ2.
The 243 coarser lattice has been analyzed similarly for

the ml ¼ 0:005, 0.01 and 0.02 ensembles and the results

are shown in Fig. 51. The mass renormalization factors on

the 243 lattice for the two intermediate SMOM schemes are

ZMSð24Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:578ð2Þ;
(86)

ZMSð24Þ
m ð�¼2GeV;nf¼3;SMOMÞ¼1:534ð10Þ: (87)

In Eq. (64) we have presented the bare-quark masses for

the fine 323 lattice and in Table XXVI we give the ratios of
equivalent bare masses on the 243 and 323 lattices. Because
of the different Oða2Þ artefacts for the light and heavy-

quark masses, there are two such ratios Zl for the ud quarks

and Zh for the s quark. These ratios Zl and Zh are also the

scheme-independent ratios of the renormalization con-

stants on the course and fine lattices. We now use these

ratios to estimate the difference of the MS renormalized

masses with the SMOM and SMOM��
schemes in the

continuum limit. The continuum extrapolation of Zð32Þ
m
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FIG. 50 (color online). Z
SMOM��
m ð�Þ and ZSMOM

m ð�Þ as func-

tions of �2 ¼ p2, and ZMS
m ð2 GeVÞ from the SMOM or

SMOM��
schemes as a function of matching scale squared p2

for the fine lattice. The interpolation points are shown with the

error bar at p2 ¼ ð2 GeVÞ2.
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coarse 243 lattice is shown.
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and Zð24Þ
m =Zl or Z

ð24Þ
m =Zh will remove the ðpaÞ2 error in the

nonperturbative renormalization. Thus, if a difference is

found, it can largely be attributed to the truncation error of

the perturbative matching. Performing such an extrapola-

tion we find

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:527ð6Þ;
(88)

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:511ð22Þ;

(89)

for the ud quark, and

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:510ð6Þ;
(90)

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:495ð22Þ;

(91)

for the s quark. Note that because these factors multiply

~mudð323Þ=að323Þ or ~msð323Þ=að323Þ presented in Eq. (64)

to give theMS mass in the continuum limit, they are made

to absorb the Oða2ð323ÞÞ discretization error in these bare-

quark masses on the fine lattice. Because of this, as well as

the fact that the Zm’s are free fromOða2Þ errors originating
from the SMOM nonperturbative renormalization, we have

put additional suffix ‘‘c’’ as ‘‘continuum’’ to distinguish

them from ZMSð32Þ
m . The existence of a mass dependent

contribution to theOða2Þ artefacts gives rise to the different
Zm for the light and heavy-quark masses. From the two

different estimates of the MS renormalization factors with

the SMOM and SMOM��
intermediate nonperturbative

schemes, we choose to take SMOM��
for our central value.

The reason is that the scatter about the linear behavior

observed for the SMOM scheme in Figs. 50 and 51 is

much larger. Although the effect of the scatter has been

taken into account in the error, we consider the continuum

extrapolation from the SMOM scheme to be less reliable.

The difference in the central values of ZMSð32Þc
ml in Eqs. (88)

and (89) is about 1%, and this is also the case for

the difference between the central values of ZMSð32Þc
mh in

Eqs. (90) and (91). These differences of about 1% give an

indication of the possible size of the truncation error of the

perturbative two-loop matching to MS (it should be noted

however, that the errors in the renormalization factors in

the SMOM scheme are even a little larger). Another esti-

mate of the truncation error of the matching is obtained by

evaluating the size of the two-loop term in Eq. (74),

resulting in 2.1% for the SMOM��
scheme. In order to

be conservative, we shall take the latter as our estimate.

Other systematic errors arise from the fact that the simu-

lated strange mass is nonzero and from the small difference

in the scalar and pseudoscalar vertices due to the residual

spontaneous symmetry breaking effects. The first error is

estimated from the response of scalar and pseudoscalar

vertex functions to the variation of the light-quark mass

[14]. From the flat behavior of�P þ�S on the light-quark

mass in Fig. 49 it can be seen that this uncertainty is small.

The error estimates are compiled in Table XXXVII. In the

table, the corresponding errors from the RI/MOM analysis

[14] are shown for comparison. All errors have become

significantly smaller for the new SMOM schemes. Now

our final values for the MS renormalization factor read

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3Þ ¼ 1:527ð6Þð33Þ; (92)

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3Þ ¼ 1:510ð6Þð33Þ; (93)

where the first error is the statistical uncertainty inflated to

take into account the scatter about the linear behavior due

to Oð4Þ noninvariant effects (as explained above) and the

second is due to the remaining systematic effects and is

dominated by the 2.1% truncation error of the perturbative

matching. Here we have not taken into account the statis-

tical fluctuation of ZV , which will be properly included in

the calculation of the renormalized quark masses described

in the next subsection. The corresponding renormalization

factor for the light-quark mass on the coarse 243 lattice is

ZMSð24Þc
ml ð�¼ 2 GeV; nf ¼ 3Þ ¼ Zl � ZMSð32Þc

ml ð�¼ 2 GeV;
nf ¼ 3Þ ¼ 1:498ð6Þð33Þ. This value is consistent with our

earlier estimate of the same quantity using RI/MOM as the

intermediate scheme, 1.656(157) [14], but now with a

considerably reduced error.

TABLE XXXVII. The systematic error budget for ZMS
m ð2 GeVÞ with intermediate RI/SMOM

schemes (this work) and RI/MOM scheme [14].

Ensemble Fine (322) Course (243) Course (163) [14]
Intermediate scheme RI/SMOM RI/SMOM RI/MOM

PT truncation error 2.1% 2.1% 6%

ms � 0 0.1% 0.2% 7%

ð�P ��SÞ=2 0.5% 0.6% N.A. (1)

ð�A ��VÞ=2 0.0% 0.0% 1%

total 2.2% 2.2% 9%
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B. Renormalized quark masses

After the detailed discussion of the quark mass renor-

malization, it is now straightforward to combine the renor-

malization constants in Eqs. (92) and (93) with the physical

bare-quark masses on the 323 lattice in Eq. (64) to obtain

the light and strange-quark masses renormalized in MS
scheme:

mMS
ud ð2 GeVÞ ¼ ZMSð32Þc

ml ð� ¼ 2 GeV; nf ¼ 3Þ
� ~mudð323Þ � a�1ð323Þ

¼ 3:59ð13Þstatð14Þsysð8Þren MeV; (94)

mMS
s ð2 GeVÞ ¼ ZMSð32Þc

mh ð� ¼ 2 GeV; nf ¼ 3Þ
� ~msð323Þ � a�1ð323Þ

¼ 96:2ð1:6Þstatð0:2Þsysð2:1Þren MeV; (95)

where the three errors on the right-hand side correspond to

the statistical uncertainty, the systematic uncertainty due

to the chiral extrapolation and finite volume, and the error

in the renormalization factor. We recall that for the error

due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-

volume NLO SU(2) and analytic fits and for the central

value we take the average of these results. We estimate the

finite-volume effects from the difference of the results

obtained using finite-volume and infinite-volume NLO

ChPT fits and combine these errors in quadrature. The

finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms

mud
¼ 26:8ð0:8Þstatð1:1Þsys: (96)

We end this section by presenting our results for the

leading-order LEC B and the chiral condensate. Using the

finite-volume NLO ChPT fits we find

BMSð2 GeVÞ ¼ ZMSð32Þ�1
ml ð� ¼ 2 GeV; nf ¼ 3Þ

� Bð323Þ � a�1ð323Þ
¼ 2:64ð6Þstatð6Þsysð6Þren GeV: (97)

Combining this result with the pion decay constant in the

chiral limit, also obtained using the finite-volume NLO

ChPT fits the chiral condensate is found to be

½�MSð2 GeVÞ�1=3 ¼ ½f2Bð2 GeVÞ=2�1=3

¼ 256ð5Þstatð2Þsysð2Þren MeV: (98)

In Eqs. (97) and (98) the second error is only due to finite-

volume corrections estimated from the difference of finite

and infinite-volume NLO ChPT fits.

VII. TOPOLOGICAL SUSCEPTIBILITY

The topological charge Q, defined on a single Euclidean

space-time configuration, and its susceptibility, �Q, are

interesting quantities to calculate. While Q depends only

indirectly on the quark masses, leading-order SU(2) ChPT

[64,65] predicts a strong dependence of �Q on the light

with �Q vanishing linearly as ml ! 0, suggesting that �Q

may show important dynamical quark mass effects.

In the continuum Q and �Q are defined by

Q¼ g2

16�2

Z

d4xG�
ðxÞ ~G�
ðxÞ and �Q¼hQ2i=V; (99)

where V is the four-volume of the lattice, G�
ðxÞ is the

gluon field strength tensor and ~G�
ðxÞ, its dual. In the

continuum, Q is integer valued and related to exact chiral

zero modes of the massless Dirac operator by the Atiyah-

Singer index theorem [66]. For sufficiently smooth gauge

fields it is possible to find a lattice expression which will

always evaluate to an integer [67], as in the continuum

limit. However, in the calculation reported here the neces-

sary smoothness condition is not obeyed and we instead

replace the right-hand side of Eq. (99) by a sum of Wilson

loops chosen to approximate the G�
ðxÞ ~G�
ðxÞ product in
Eq. (99). Specifically we employ the ‘‘five-loop improved’’

definition of the topological charge proposed in Ref. [68]
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FIG. 52 (color online). Monte Carlo time histories of the

topological charge. The light sea-quark mass increases from

top to bottom, [0.005 and 0.01, 243 (top two panels), and

0.004-0.008, 323]. Data for the 243 ensembles up to trajectory

5000 were reported originally in [1]; the results for later trajec-

tories and for the 323 ensembles are new and are plotted in black.

Most of the data was generated using the RHMC II algorithm

(red and black lines). The exceptions are the trajectories up to

1455 for the ml ¼ 0:01, 243ensemble for which the RHMC 0

(for the first 550 trajectories, green line) and RHMC I (for

remaining trajectories up to 1455, blue line) were used. The

small gap in the top panel represents missing measurements

which are irrelevant since observables are always calculated

starting from trajectory 1000.
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which at tree level is accurate through order a4. However,
before evaluating this lattice expression for the topological

charge, we smooth the links in the lattice by performing a

series of APE smearing steps [69,70]. The smearing pa-

rameter was set to 0.45, and 60 smearing sweeps were

performed before measuring Q. The results are insensitive

to the choice of these parameters.

In Fig. 52 theMonte Carlo time history ofQ is shown for

each ensemble of gauge fields in our study. For each case,

the update algorithm RHMC II [1] was used, except for the

first 1455 configurations for theml ¼ 0:01 ensemble where

the RHMC 0 and RHMC I algorithms were used. In [1] it

was shown that RHMC II is more effective in changing the

gauge field topology, and therefore produces shorter auto-

correlation times. The data for the first half (up to trajec-

tory 5000) of both 243 ensembles is repeated from [1].

Figure 52 shows clearly the expected slowing of the rate of

change of topological charge when moving towards the

continuum [71] and, to a lesser degree, when decreasing

the quark mass. The integrated autocorrelation times for Q
for the smaller lattice-spacing ensembles are shown in

Fig. 2. While this figure is consistent with the autocorrela-

tion times reaching a plateau of about 80 time units when

integrated over an interval of about 200 time units, the

exploding errors make this conclusion highly uncertain.

Scanning Fig. 52 by eye, one might argue that the auto-

correlations could be 500 time units, or longer. For ex-

ample, note the large fluctuation to negative Q beginning

around time unit 4750 for ml ¼ 0:006.
The distributions of topological charge for each en-

semble are shown in Fig. 53. The distributions become

narrower as the quark mass is decreased. For the smaller

lattice spacing, they also appear to exhibit non-Gaussian-

like tails, or humps at large jQj.
Because of the parity symmetry of our calculation, the

average of the pseudoscalar quantity hQi vanishes.

However, �Q remains nonzero and at leading order in

SU(2) chiral perturbation theory [64,65] is given by

�Q ¼ �

�
1

mu

þ 1

md

��1
¼ �

mumd

mu þmd

; (100)

where � ¼ Bf2=2 is the chiral condensate coming from a

single flavor in the limit of vanishing up and down quark

mass.
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FIG. 53. Topological charge distributions are shown. Top: 323, ml ¼ 0:004–0:008, left to right. Bottom: 243, ml ¼ 0:005 and 0.01.
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At one-loop in chiral perturbation theory [72],

�Q ¼ �

�
1

mu

þ 1

md

��1
�

�

1� 3

ð4�fÞ2 m
2
� log

m2
�

�2

þ K6ðmu þmdÞ þ 2ð2K7 þ K8Þ
mumd

mu þmd

�

; (101)

¼ �
ml

2

�

1� 3

ð4�fÞ2 m
2
ll log

m2
ll

�2
þ ð2K6 þ 2K7 þ K8Þml

�

;

(102)

where Ki ¼ 128�Li=f
4 are proportional to the Gasser-

Leutwyler NLO LECs [72], and in the last line the formula

is evaluated for degenerate quarks. In contrast to other

quantities considered in this paper, we do not attempt to

characterize or evaluate the corrections to Eqs. (101) or

(102) which come from nonzero lattice spacing. That

interesting question is left for future work.

In Table XXXVIII values of hQi and �Q for each en-

semble of configurations are summarized. To test for the

expected autocorrelations, the data were blocked into bins

of various sizes ranging from 10 to 600 time units. The

quoted values of the statistical errors resulted when the

block sizes were taken large enough that the errors no

longer changed significantly. The block sizes are given in

Table XXXVIII. For all cases the first 1000 time units were

discarded for thermalization.

The dependence of �Q on the light-quark mass is shown

in Fig. 54. All of the data points lie above the LO curve

(dashed line), all but the lightest significantly so. The result

of the fit (�2=dof � 13=4 � 3) to the NLO formula,

Eq. (102), is also shown. Since we have not determined

K7 in Eq. (102) from other means, we treat the linear

combination of LECs as a single, new, free parameter in

the fit and find ð2K6 þ 2K7 þ K8Þ ¼ 19:8ð6:3Þ. Except for
the lightest data point, there is scant evidence for large

Oða2Þ errors, though the statistical errors on the heavier

two points with a�1 ¼ 2:284 are somewhat large. Omitting

the former point in the fit leads to a more acceptable value

of �2=dof � 1:5, suggesting the lightest point may be

systematically low due to long autocorrelations in Q
that are not well resolved in our finite Markov chain of

configurations. Despite these limitations, the data appear to

show a dependence on the light quark mass that is consis-

tent with the dictates of NLO SU(2) ChPT.

VIII. CONCLUSIONS

We have presented results from simulations using DWF

and the Iwasaki gauge action for lattice QCD at two values

of the lattice spacing [a�1 ¼ 1:73ð3Þ GeV and a�1 ¼
2:28ð3Þ GeV] and for unitary pion masses in the range

290–420 MeV (225–420 MeV for the partially quenched

pions). The raw data obtained at each of the two values of

� was presented in Secs. III and IV respectively and the

chiral behavior of physical quantities on the 243 and 323

lattices separately was studied in Appendix A. The main

aim of this paper, however, was to combine the data

obtained at the two values of the lattice spacing into global

chiral-continuum fits in order to obtain results in the con-

tinuum limit and at physical quark masses and we explain

TABLE XXXVIII. Topological charge and susceptibility. The measurement frequency,

‘‘meas. freq.’’, and ‘‘block size’’ are given in units of Monte Carlo time.

ml

Measurement

frequency

Block

size hQi hQ2i � (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000 290 (14)

0.01 5 50 �0:22ð37Þ 45.2 (2.5) 0.000 458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000 148 (14)

0.006 4 200 �0:07ð64Þ 24.8 (4.3) 0.000 322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000 363 (72)
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a
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FIG. 54 (color online). Topological susceptibility [243

(squares), 323 (circles)]. The dashed line is the prediction from

LO SU(2) chiral perturbation theory [Eq. (100)] with the chiral

condensate computed from the finite-volume LECs given in

Table XXVII. The solid line denotes the result of the single-

parameter fit to the NLO formula given in Eq. (102).

Y. AOKI et al. PHYSICAL REVIEW D 83, 074508 (2011)

074508-56



our procedure in Sec. V. In that section we define our

scaling trajectory, explain how we match the parameters

at the different lattice spacings so that they correspond to

the same physics and discuss how we perform the extrap-

olations. We consider this discussion to be a significant

component of this paper and believe that this will prove to

be a good approach in future efforts to obtain physical

results from lattice data. Although we apply the procedures

to our data at two values of the lattice spacing, we stress

that the discussion is more general and can be used with

data from simulations at an arbitrary number of different

values of �. In the second half of Sec. V we then perform

the combined continuum-chiral fits in order to obtain our

physical results for the decay constants, physical bare-

quark masses (which are renormalized in Sec. VI) and

for the quantities r0 and r1 defined from the heavy-quark

potential. For the discussion below, it is important to recall

that we use the physical pion, kaon, and � masses to

determine the physical quark masses and the values of

the lattice spacing and we then make predictions for other

physical quantities.

In contrast to most other current lattice methods, the

DWF formulation gives our simulations good control over

chiral symmetry, nonperturbative renormalization factors,

and flavor symmetry. This control allows us to measure and

use, as either inputs or predictions: pseudoscalar decay

constants, as well as their ratios; pseudoscalar masses;

baryon masses; weak matrix elements and static potential

values, limited only by the statistics achievable for these

observables. The ability to predict many observables from

the same simulations, provides evidence for the general

reliability of the underlying methods. The good properties

of DWF also allow us to test scaling, over this wide range

of observables, at unphysical quark masses, since there are

no flavor or chiral symmetry breaking effects to distort a

test of scaling. We find scaling violations at the percent

level, which supports including scaling corrections in only

the leading-order terms in our light-quark expansions.

As we reduce the quark masses used in the simulations,

it is frustrating that there remains a doubt as to the best

ansatz to use for the chiral extrapolation. We know of

course that for sufficiently light u and d masses the behav-

ior is given by SU(2) ChPT; what we do not know is what

‘‘sufficiently light’’ means in practice. While in the range

of quark masses accessible in our simulations, correspond-

ing to 290–420 MeV for unitary pions and 225–420 MeV

for partially quenched pions, our data are consistent with

NLO SU(2) ChPT, we have seen that they are also con-

sistent with a simple analytic ansatz leading to an inherent

uncertainty in how best to perform the chiral extrapolation.

This is particularly well illustrated in the study of f�, see
Fig. 35 for example, where the data is well represented by

all three ansätze [including NLO SU(2) ChPT with finite-

volume corrections], but the extrapolated values differ as

seen in Table XXXI f� ¼ 121ð2Þ MeV from the NLO

ChPT analysis with finite-volume corrections and f� ¼
126ð2Þ MeV using the analytic ansatz. Since a complete

NNLO ChPT analysis is not possible with the available

data, we have resisted the temptation to introduce model

dependence by including only some of the higher order

corrections and for our current ‘‘best’’ results we take the

average of the two values and include the full difference

in the systematic uncertainty obtaining f� ¼
124ð2Þð5Þ MeV. In Sec. VE 3 we investigated the increase

in �2=dof if the fits are required to pass through the

physical value 130.7(4) MeVup to corrections from lattice

artefacts and found �2 ¼ 1:9ð7Þ for the analytic ansatz and
an unacceptably large value of 5(1) for the NLO ChPTwith

finite-volume corrections. In the future, it will be very

interesting to see how the different ansätze for the chiral

extrapolation become constrained or invalidated as we

perform simulations with even lighter masses. We point

out that the difference in the results from the analyses using

the finite-volume ChPT and analytic ansätze is much

smaller for the other quantities studied in this paper than

for f�.
The main physical results of this study are

f� ¼ 124ð2Þð5Þ MeV;

fK ¼ 149ð2Þð4Þ MeV;

fK
f�

¼ 1:204ð7Þð25Þ;

mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV;

mMS
ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV;

½�MSð2 GeVÞ�1=3 ¼ 256ð6Þ MeV;

r0 ¼ 0:487ð9Þ fm; and

r1 ¼ 0:333ð9Þ fm:

(103)

For convenience, in order to help the reader find the

corresponding discussion, we now list the equation num-

bers where the results were presented earlier in this paper.

They are (61) for f�, (62) for fK, (63) for fK=f�, (95) for

mMS
s , (94) formMS

ud , (98) for�
MS, and (66) for r0 and r1. All

the results in Eq. (103) were obtained after reweighting the

strange-quark mass to its physical value at each �, and the
renormalized quark masses were obtained using nonper-

turbative renormalization with nonexceptional momenta as

described in Sec. VI. The low-energy constants obtained

by fitting our data to NLO chiral perturbation theory can be

found in Sec. VE.

The configurations and results presented in this paper are

being used in many of our current studies in particle

physics phenomenology, including the determination of

the BK parameter of neutral-kaon mixing in the continuum

limit [35]. In parallel to these studies we are exploiting

configurations generated at almost physical pion masses on

lattices with a large physical volume (� 4:5 fm) but at the
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expense of an increased lattice spacing. Preliminary results

obtained for the meson spectrum and decay constants and

for �I ¼ 3=2 K ! �� decay amplitudes were recently

presented in Refs. [52,73]. Having access to data with

excellent chiral and flavor properties with a range of lattice

spacings and quark masses makes this an exciting time

indeed for studies in lattice phenomenology.
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TABLE XXXIX. Results from the SU(2) ChPT fits to the 243 data (without and with finite-volume corrections) compared to those

from [1] obtained with lower statistics (without finite-volume corrections). We also quote in the lower part of the table the SU(2) ChPT

fit parameters aB, af, Lð2Þ
i (at the scale �� ¼ 1 GeV), and bare-quark masses a ~mud;s in lattice units. Only statistical uncertainties are

quoted except for quark masses and the LEC B renormalized in the MS scheme at 2 GeV where also the systematic uncertainty from

the renormalization constant is quoted. [Mass renormalization constant at 1=a ¼ 1:731ð19Þ GeV: Zm ¼ 1:546ð0:002Þstatð0:044Þren and
at 1=a ¼ 1:784ð44Þ GeV: Zm ¼ 1:559ð0:003Þstatð0:047Þren.]

Allton et al. [1] Increased statistics

No FV correlated No FV corrrelated Including FV correlated

�: ml 	 0:03 �: ml 	 0:03 �: ml 	 0:01 �: ml 	 0:01

1=a [GeV] 1.729(28) 1.731(19) 1.784(44) 1.784(44)

BMSð2 GeVÞ [GeV] 2:52ð0:11Þð0:23Þren 2:63ð0:06Þð0:07Þren 2:69ð0:09Þð0:08Þren 2:63ð0:09Þð0:08Þren
f [MeV] 114.8(4.1) 111.5(2.9) 114.8(4.0) 117.1(4.0)

�l3 3.13(0.33) 2.76(0.24) 2.82(0.24) 2.59(0.27)
�l4 4.43(0.14) 4.54(0.10) 4.61(0.10) 4.57(0.11)

f� [MeV] 124.1(3.6) 121.2(2.5) 124.4(3.6) 126.4(3.6)

fK [MeV] 149.6(3.6) 147.9(2.6) 151.0(3.7) 152.1(3.7)

fK=f� 1.205(0.018) 1.220(0.011) 1.214(0.012) 1.204(0.012)

mMS
ud ð2 GeVÞ [MeV] 3:72ð0:16Þð0:33Þren 3:56ð0:08Þð0:10Þren 3:48ð0:12Þð0:10Þren 3:55ð0:12Þð0:11Þren

mMS
s ð2GeVÞ [MeV] 107:3ð4:4Þð9:7Þren 101:0ð1:9Þð2:9Þren 99:0ð3:0Þð3:0Þren 98:8ð3:0Þð3:0Þren

~mud: ~ms 1:28.8(0.4) 1:28.37(0.27) 1:28.44(0.26) 1:27.89(0.28)

aB 2.414(61) 2.348(43) 2.349(44) 2.298(45)

af 0.0665(21) 0.0644(14) 0.0643(14) 0.0656(14)

Lð2Þ
4 � 104 1.3(1.3) 2.2(0.9) 2.5(0.9) 2.2(0.9)

Lð2Þ
5 � 104 5.16(0.73) 5.00(0.47) 5.50(0.47) 5.36(0.48)

ð2Lð2Þ
6 � Lð2Þ

4 Þ � 104 �0:71ð0:62Þ �0:09ð0:45Þ 0.03(0.45) 0.01(.49)

ð2Lð2Þ
8 � Lð2Þ

5 Þ � 104 4.64(0.43) 4.86(0.30) 4.36(0.38) 5.34(0.33)

a ~mud 0.001 300(58) 0.001 331(43) 0.001 251(71) 0.001 274(72)

a ~ms 0.0375(16) 0.0377(11) 0.0356(19) 0.0355(19)
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APPENDIX A: SEPARATE FITS

TO 243 AND 323 DATA

In this section we report on results obtained by fitting the

data from the 243 runs at� ¼ 2:13 and from the 323 runs at
� ¼ 2:25 separately to the predictions of SUð2Þ � SUð2Þ
ChPT. This complements the material presented in Secs. III

and IV in which we presented the results for masses and

decays constants at each set of quark masses but did not

perform the chiral extrapolations and also that in Sec. V in

which we performed simultaneous chiral and continuum

fits to the data at both lattice spacings. Our main motivation

for studying separate fits here is to be able to compare

directly our results obtained with the new data to those in

our previous publication [1]. For that reason in this appen-

dix we will be using the same renormalization constant ZA

as in our previous publication, which differs from the one

used in the global analysis presented in the main part of this

paper, see the discussion in Sec. III and Appendix B for

details. We use the same method of iterated fits as outlined

in our earlier publication [1]; at each lattice spacing we

iterate the combined fits of the meson masses and decay

constants with mx 	 0:01 to the SU(2)-ChPT formulas,

using kaon SU(2) ChPT to fit the kaon mass and decay

constants and the extrapolation in the�-baryon mass until

convergence. The pion, kaon, and� masses are used to fix

the physical bare-quark masses mud, ms, and the lattice

scale 1=a. Predictions for the remaining physical quantities

are then obtained by extrapolation to these physical quark

masses. For further details see [1]. In the case of the 243
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FIG. 55 (color online). Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left column)

and masses (right column) on the 243 data set at ml ¼ 0:005 (top row) and 0.01 (bottom row). Only points marked with circles,

corresponding to the range ðmx þmyÞ=2 	 0:01, are included in the fits.
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ensembles, the runs have been extended since the publica-

tion of [1] (see Sec. II and especially Table I for details) so

that a direct comparison of the results from the previous

(smaller) data set with the new extended data set is pos-

sible. We quote results from fits with and without correc-

tions due to finite-volume effects. When including the

finite-volume corrections, the terms described in

Appendix C of [1] are included in the SU(2) ChPT in the

pion sector (both for the meson masses and decay con-

stants). We also include the correction terms containing the

chiral logarithm of the light-quark masses in the kaon

decay constant [74] and note that up to NLO in the light-

quark masses, no finite-volume corrections arise in the

masses of the kaon and � baryon. Below we present the

physical results in the infinite-volume limit, i.e., after re-

moving the corrections. Finally, we will perform a naive

continuum extrapolation of the results obtained by the

separate fits at the two lattice spacings, which can then

be compared to results from the combined chiral-

continuum extrapolations using the global fits described

in Sec. V. Note that in this appendix also for the combined

chiral-continuum extrapolations we are going to quote

results obtained using our previous definition of ZA. For

that reason the results reported here differ slightly from

those in the main part of this paper.

1. SU(2)-ChPT fits to 243 data

In Table XXXIX we summarize our results from the

iterative fits to the masses and decay constants measured

on the 243 ensembles (see Sec. III for details) and compare

them to our earlier results obtained with lower statistics [1].

We have performed two kinds of fits: one including the

�-baryon masses determined at all the simulated light-

quark masses, ml ¼ 0:005, 0.01, 0.02, and 0.03, (as was

done originally) and one where only the �-baryon masses

at the two lightest dynamical quark massesml ¼ 0:005 and
0.01 are included. The latter, limited range is also the one

used in the combined chiral-continuum extrapolations in

Sec. V and in the separate fits to the 323 data in the next

subsection. In Fig. 55 we plot the combined SU(2) ChPT

fits (without finite-volume corrections) to the meson

masses and decay constants in the pion sector. It is evident

that over the fit range ðmx þmyÞ=2 	 0:01, corresponding
to a maximum meson mass of about 420 MeV, the data is

well described by SU(2) ChPT. This is also true for the fits

including the finite-volume corrections (not shown).

We note that by comparing the results in the first two

columns of Table XXXIX, which have been obtained using

the same (large) mass-range for the chiral extrapolation of

the�-baryon mass, the results obtained with the increased

statistics (for each dynamical light-quark mass the statis-

tics has nearly been doubled, see Sec. III) nicely agree with

those from our previous publication [1] within the statisti-

cal uncertainty. Furthermore, we observe the expected

reduction in the statistical error. For the remainder of the

discussion, we focus on the fits in which only the two

lightest dynamical masses have been included in the ex-

trapolation of the�-baryon mass, i.e., the last two columns

of Table XXXIX. The major difference resulting from this

change in the fit range is in the value of the lattice scale

1=a, but within 1.4 standard deviations (statistical error

only, taking into account correlations) the results still show

agreement. Including the finite-volume effects results in

higher values for the decay constants (both in the chiral

limit and at the physical point), which is a statistically

significant effects (taking the correlations into account).

In Table XL we compare the decay constants and their ratio

obtained from the separate fits with the corresponding

results from the global analysis at the simulated, finite

value of the lattice-spacing (i.e. not extrapolated to the

continuum, see Sec. V and especially Tables XXXI,

XXXII, and XXXIII but note the difference due to the

use of our previous definition of ZA here). We are reassured

by the observed agreement between the results obtained

using the global fits with those obtained using our previous

strategy in Ref. [1] which was developed at that time to

describe data at only a single lattice spacing.

2. SU(2)-ChPT fits to 323 data

The results of a separate fit on the 323 data set are

summarized in Table XLI. Here we only included the

�-baryon masses from the ml ¼ 0:004, 0.006, and 0.008

TABLE XL. Comparison of the pion and kaon decay constants and their ratios at finite lattice spacing from separate (see

Tables XXXIX and XLI) and global fits using our previous definition of ZA.

f� [MeV] fK [MeV] fK=f�

No FV correlated 243, � ¼ 2:13 separate 124.4(3.6) 151.0(3.7) 1.214(0.012)

global 123(2) 150(2) 1.215(0.009)

323, � ¼ 2:25 separate 120.4(1.9) 147.1(2.0) 1.222(0.007)

global 121(2) 147(2) 1.222(0.006)

Including FV correlated 243, � ¼ 2:13 separate 126.4(3.6) 152.1(3.7) 1.204(0.012)

global 126(2) 151(2) 1.204(0.009)

323, � ¼ 2:25 separate 122.3(1.9) 148.1(2.0) 1.212(0.007)

global 123(2) 149(2) 1.210(0.006)
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ensembles. In Fig. 56 we show the fits for the meson

masses and decay constants in the pion sector (without

finite-volume corrections). Again, over the fit range

[ðmx þmyÞ=2 	 0:008], corresponding to a maximum

pion mass of about 400 MeV, the data is well described

by SU(2) ChPT.

As was already the case for the 243 ensembles, taking

finite-volume corrections into account also leads to a good

description of the data and results in higher values for the

decay constants at the physical point and in the chiral limit.

Again, taking the correlations into account, we note that

this is a statistically significant effect. As was also the case

on the 243 ensembles, we observe a good agreement for the

decay constants and their ratio between the results of the

separate fits to the 323 data and the results from the global

fits at finite lattice spacing, see Table. XL.

3. Extrapolation to the continuum limit

With the results obtained from separate chiral extrapo-

lations on the 243 (extended statistics) and the 323 data sets
(see the two previous subsections, respectively) we can

perform a naive continuum limit extrapolation assuming a2

scaling. Of course, with only two lattice spacings available,

we are not able to confirm this scaling behavior. Further

caveats include the fact that here, for simplicity, we did not

use reweighting and so the dynamical strange-quark mass

is not tuned to exactly the same value on the two data sets

and indeed is not exactly the physical one on either set.

Also, the dynamical light-quark mass ranges are a little

different at the two lattice spacings, corresponding to

unitary pion masses in the range 330–420 MeV on the

coarser 243 lattices and 290–400 MeV on the finer 323

lattices (a similar statement is true for the partially

quenched masses). One might therefore expect a larger

uncertainty in the chiral extrapolation of the 243 results.

In the naive continuum ansatz followed here, we are not

taking into account this effect. Because of this, and maybe

more importantly, since two separate chiral extrapolations

have been performed (one at each of the two values of the

lattice spacing), the continuum extrapolation is not com-

pletely disentangled from the chiral extrapolation. Recall

that in our procedure for the global fits described in the

main part of this paper, these two extrapolations are indeed

disentangled. There this is achieved by addingOða2Þ terms

into the two functions, such that the chiral and continuum

extrapolations are performed simultaneously and indepen-

dently from each other.

TABLE XLI. Results from the SU(2) ChPT fits to the 323 data (without and with finite-volume

corrections). We also quote in the lower part of the table the SU(2) ChPT fit parameters aB, af,

Lð2Þ
i (at the scale �� ¼ 1 GeV) and quark masses a ~mud;s in lattice units. Only statistical

uncertainties are quoted except for quark masses and the LEC B renormalized in the MS
scheme at 2 GeV where also the systematic uncertainty from the renormalization constant is

quoted. [Mass renormalization constant at 1=a ¼ 2:221ð29Þ GeV: Zm ¼ 1:550ð0:002Þstat �
ð0:034Þren.]

No FV correlated FV correlated included

1=a [GeV] 2.221(29) 2.221(29)

BMSð2 GeVÞ [GeV] 2:62ð0:05Þð0:06Þren 2:57ð0:05Þð0:06Þren
f [MeV] 111.4(2.2) 113.7(2.2)

�l3 2.84(0.21) 2.61(0.24)

�l4 4.18(0.09) 4.10(0.09)

f� [MeV] 120.4(1.9) 122.3(1.9)

fK [MeV] 147.1(2.0) 148.1(2.0)

fK=f� 1.222(0.007) 1.212(0.007)

mMS
ud ð2 GeVÞ [MeV] 3:58ð0:07Þð0:08Þren 3:64ð0:07Þð0:08Þren

mMS
s ð2 GeVÞ [MeV] 100:6ð1:7Þð2:2Þren 100:4ð1:7Þð2:2Þren

~mud: ~ms 1:28.08(0.19) 1:27.60(0.20)

aB 1.826(0.024) 1.790(0.025)

af 0.0502(0.0007) 0.0512(0.0007)

Lð2Þ
4 � 104 �0:75ð0:79Þ �1:21ð:82Þ

Lð2Þ
5 � 104 5.14(0.40) 4.87(0.41)

ð2Lð2Þ
6 � Lð2Þ

4 Þ � 104 �0:93ð0:42Þ �1:03ð0:45Þ
ð2Lð2Þ

8 � Lð2Þ
5 Þ � 104 6.22(0.23) 7.37(0.24)

a ~mud 0.001 040(31) 0.001 057(32)

a ~ms 0.0292(08) 0.0292(08)
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FIG. 56 (color online). Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left column)

and masses (right column) on the 323 data set at ml ¼ 0:004 (top row), 0.006 (middle row), and 0.008 (bottom row). Only points

marked with circles, corresponding to the range ðmx þmyÞ=2 	 0:008 are included in the fits.
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In Table XLII we repeat the results obtained at the two

different lattice spacings (with and without finite-volume

corrections) and give the values extrapolated to the con-

tinuum limit assuming a2 scaling. Figure 57 illustrates the

continuum extrapolation of the various quantities (only

results obtained without taking into account finite-volume

corrections are shown there). Note, that the two points at

the different lattice spacings are completely uncorrelated,

the only correlation in the data for the continuum extrapo-

lation is between the uncertainty in the lattice spacing (the

‘‘x’’ datum) and the quantity itself at that lattice spacing

(the ‘‘y’’ datum). These correlations were treated by the

superjackknife method which we have been using in our

earlier work and which is clearly explained in [75,76]. For

comparison, Table XLII also contains our results from the

combined continuum-chiral extrapolation as described in

the main part of this paper but here using our previous

definition of ZA. As one can see, the combined continuum-

chiral extrapolation gives a substantially smaller (up to a

factor of 5) statistical uncertainty compared to the naive

continuum extrapolation. The main reason, of course, is the

correlation in the combined fits between the two data sets

at different lattice spacings. This correlation occurs be-

cause we require the fitted parameters to be the same on

both data sets and only include Oða2Þ corrections for the
leading-order terms, as is consistent with our power-

counting scheme. In this way, the continuum extrapolation

in the combined fits is also more constrained, leading to a

smaller statistical uncertainty. Comparing the results of the

naive continuum extrapolation and the combined

continuum-chiral extrapolation for the quantities in

Table XLII we observe agreement better than 0:5-	 (taking

into account correlations) for all quantities except for �l4,
where the agreement still holds at the 1- or 1:5-	 level

(without and with taking FV corrections into account,

respectively). It is reassuring, that the results from the

two methods agree well, although the value of this state-

ment is limited, given the large (statistical) uncertainty of

almost 10% for the decay constants or even more in case of

the LECs from the naive method. However, it should be

noted that the same agreement holds, not only for the

continuum values, but also for the results obtained in the

separate fits as compared to the predictions of the global fit

made for the finite lattice spacings. This has already been

discussed in the previous subsections and is shown in

Table XL.

APPENDIX B: DETERMINING ZA

As pointed out by Sharpe [18] and refined in Ref. [1], the

normalization of the partially conserved axial current de-

fined for domain wall fermions [77] is expected to deviate

TABLE XLII. Selected results from separate fits to the 243 and 323 data sets (� masses from

ml 	 0:1 for 243 data set, cf. Tables XXXIX and XLI) and their naive continuum limit assuming

a2 scaling (see Fig. 57) compared to results from the combined chiral-continuum extrapolation

using the previous definition of ZA. The top table contains results without finite-volume

corrections whereas the results in the bottom table were obtained by including finite-volume

effects.

No FV correlated

Separate fits Naive CL Combined chiral/CL

243, � ¼ 2:13 323, � ¼ 2:25

a [fm] 0.1106(27) 0.0888(12) ! 0 ! 0
f [MeV] 114.8(4.0) 111.4(2.2) 105.2(10.4) 107(2)
�l3 2.82(0.24) 2.84(0.21) 2.87(0.74) 2.81(0.16)
�l4 4.61(0.10) 4.18(0.09) 3.39(0.36) 3.76(0.08)

f� [MeV] 124.4(3.6) 120.4(1.9) 113.0(9.5) 117(2)

fK [MeV] 151.0(3.7) 147.1(2.0) 139.9(9.6) 144(2)

fK=f� 1.214(0.012) 1.222(0.007) 1.236(0.030) 1.233(0.008)

Including FV correlated

Separate fits naive CL Combined chiral/CL

243, � ¼ 2:13 323, � ¼ 2:25

a [fm] 0.1106(27) 0.0888(12) ! 0 ! 0
f [MeV] 117.1(4.0) 113.7(2.2) 107.4(10.3) 110(2)
�l3 2.59(0.27) 2.61(0.24) 2.64(0.83) 2.55(0.18)
�l4 4.57(0.11) 4.10(0.09) 3.26(0.38) 3.83(0.09)

f� [MeV] 126.4(3.6) 122.3(1.9) 114.8(9.4) 119(2)

fK [MeV] 152.1(3.7) 148.1(2.0) 140.9(9.6) 145(2)

fK=f� 1.204(0.012) 1.212(0.007) 1.226(0.029) 1.219(0.007)
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from that of the conventionally normalized continuum

current by an amount of order mresa. Here and below,

when making such estimates we will introduce the explicit

lattice spacing a and express the residual mass in physical

units in order to make the comparison of various terms in a

Symanzik expansion in powers of a easier to recognize.

Since such a deviation can be viewed as OðmaÞ which is

formally larger than the Oðma2Þ which we neglect in our

power-counting scheme and because the normalization of

this axial current plays a central role in our determination
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FIG. 57 (color online). Results from separate fits (without finite-volume corrections) to the 243 and 323 data sets (black points) and

the naive continuum-limit extrapolation (blue asterisks) for selected quantities assuming a2 scaling. For details see Appendix A 3 and

Table XLII.
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of the important quantities f� and fK, we have calculated
this normalization factor ZA numerically. We explain our

method and result in this appendix. The first subsection

contains a discussion of the theoretical issues and explains

the basis for our method of determining ZA. The second

subsection describes the actual calculation and results.

1. Determining the normalization of A�

To determine the normalization of A� we compare the

matrix element of four distinct domain wall fermion cur-

rents. The first two are the conserved/partially conserved

vector and axial currents V a
�ðxÞ and Aa

�ðxÞ, respectively,
where a and � are flavor and space-time indices. These

currents were introduced by Furman and Shamir [77] and

involve fermion fields evaluated on each of the Ls

4-dimensional hyperplanes and at both the space-time

points x and xþ ê� where ê� is a unit vector pointing

the �-th direction. Thus, these currents are local but dis-

tributed in the fifth dimension and one-link nonlocal in

space-time. While this vector current is exactly conserved,

the divergence of the axial current contains the usual mass

term and a midpoint term Ja5q. In the long-distance limit

this midpoint term can be decomposed into the residual

mass term, a piece that is conveniently written as (1� ZA)

times the divergence of the same axial current and a final

term of dimension five which we write out explicitly as the

sum of the dimension-five, chiral rotation of the usual

clover term and the four-dimensional Laplacian applied

to the pseudoscalar density:

Ja5q ¼ mres �q�
5�aqþ 1� ZA

2
��A

a
� þ c1 �q	

�
F�
�aq

þ c2@�@� �q�5�aq: (B1)

In Eq. (B1) �a is the generator which acts on the fermion

fields corresponding to the flavor index a while qðxÞ and
�qðxÞ are the physical, four-dimensional quark fields ob-

tained by evaluating the five-dimensional domain wall

fields on the s ¼ 0 and s ¼ Ls � 1 boundaries. [See

Eqs. (11) and (12) in Ref. [1].]

The second pair of currents which we will need in this

appendix is the local vector and axial currents, Va
�ðxÞ and

Aa
�ðxÞ, constructed in the standard way from the four-

dimensional quark fields, qðxÞ and �qðxÞ. These currents

are localized in all five dimensions and neither is

conserved.

Finally, it will also be convenient to introduce the scalar

densities �qðxÞqðxÞ, �qðxÞ�aqðxÞ from which the domain

fermion mass is constructed and their chiral transforms

�qðxÞ�5qðxÞ, �qðxÞ�a�5qðxÞ. These four classes of operators
will be labeled SðxÞ, SaðxÞ, PðxÞ, and PaðxÞ.

Following Symanzik, we can add improvement terms to

each of these six operators to insure that their Green’s

functions, when evaluated with an appropriately improved

action, will agree with the corresponding continuum

Green’s functions up to errors of order an. For our present
purposes, accuracy up toOðamÞwherem is a quark mass in

physical units, will be sufficient. Since mres and m have a

similar size, we are explicitly attempting to control the

mresa corrections described above. We do not attempt to

explicitly remove Oða2Þ terms since these will be elimi-

nated by the final linear extrapolation a2 ! 0.
In the discussion to follow we will recognize constraints

on the required Symanzik improvement terms and relations

between the various renormalization constants by applying

the approximate chiral symmetry of domain wall fermions

to Green’s functions containing these various operators.

For such arguments to be valid we will assume that these

Green’s functions are evaluated at sufficiently small dis-

tances that the effects of the vacuum chiral symmetry

breaking of QCD can be ignored but at sufficiently large

distances that the Symanzik improvement program can be

applied. Since this discussion is a theoretical one, con-

straining the form of the Symanzik improvement terms,

we need not be concerned about practical questions regard-

ing the degree to which such conditions can be realized in

our present calculation.

Using the notation VSa
� , ASa

� , SSa, and PSa for the

Symanzik-improved vector current, axial current, scalar

density, and pseudoscalar density, respectively, keeping

improvement terms which are nominally of order a and

imposing charge conjugation symmetry, we find

VSa
� ¼ ZVV a

� þ CV@
 �q	
�
�aq; (B2)

ASa
� ¼ ZAAa

� þ CA@�P
a; (B3)

VSa
� ¼ ZVV

a
� þ CV@
 �q	

�
�aq; (B4)

ASa
� ¼ ZAA

a
� þ CA@�P

a; (B5)

SSa ¼ ZSS
a; (B6)

PSa ¼ ZPP
a: (B7)

In contrast to the Symanzik-improved current operators,

we have not specified a normalization convention for the

operators SSa and PSa. Adopting definitive conventions for

SSa and PSa is not needed here beyond the requirement that

those conventions are consistent with SSa � PSa belonging

to the ð�3; 3Þ=ð3; �3Þ representations of the SUð3ÞL � SUð3ÞR
flavor symmetry.

Because the operators S and P contain no vector indices,

any correction terms must increase the dimension by two

and we have chosen to neglect such Oða2Þ contributions.
Thus, Eqs. (B6) and (B7) are particularly simple. However,

we can also drop the dimension-four, OðaÞ correction

terms to Eqs. (B2)–(B5). This can be established by con-

sidering the chiral structure of the Symanzik and con-

served/partially conserved current operators. Ignoring
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effects of order m, the Symanzik currents will couple to

pairs of quarks which are either left- or right-handed.

Likewise the domain wall conserved/partially conserved

current operators couple to a pair of quarks with the same

value of the coordinate s in the fifth dimension. For s ¼ 0
these are left-handed fermions while for s ¼ Ls � 1 they

are right-handed. As the coordinate s moves into the fifth-

dimensional bulk, the amplitude for coupling to such

physical modes decreases until when s � Ls=2 the ampli-

tude will be suppressed by two traversals halfway through

the fifth dimension which implies a suppression of order

mresa. Of course, the s � 0 and s � Ls � 1 terms will

dominate. The character of the local vector and axial

currents is simpler since they contain quark field strictly

limited to s ¼ 0 and Ls � 1. Since the four, dimension-

four improvement terms included in Eqs. (B2)–(B5) in-

volve pairs of quarks with opposite handedness, such terms

require a complete propagation across the fifth dimension

if they are to couple to the conserved/partially conserved or

local currents. This is true even for the terms with general s
which appear in the former currents. Thus, these correction

terms involve an additional power ofmresa and are of order

mresa
2 and can be neglected in our power-counting

scheme.

With this simplification, we can demonstrate that to this

order the following relations hold:

ZV ¼ 1; (B8)

ZV ¼ ZA; (B9)

ZS ¼ ZP: (B10)

Equation (B8) follows easily from the fact that V a
� is

conserved at finite lattice spacing and has been given the

conventional normalization. Equations (B9) and (B10) can

each be shown using essentially the same argument which

we will now review.

In the massless continuum theory the operators

�qc�a��ð1� �5Þqc are independent involving only right-

handed/left-handed degrees of freedom. Here the label c
indicates continuum. This implies the vanishing of the

Symanzik-improved Green’s function:

hðVSa
� þ ASa

� ÞðxÞðVSa

 � ASa


 ÞðyÞi ¼ 0: (B11)

This same property is obeyed by the local domain wall

currents up to order ðmresaÞ2 since nonvanishing terms

which can contribute to the DWF version of Eq. (B11)

must connect both fermion degrees of freedom between the

left and right walls requiring two-traversals of the fifth

dimension and hence are of order ðmresaÞ2 [18,78]. It is

then easy to see that these two behaviors can be consistent

through order mresa only if ZV ¼ ZA through order mresa.
We need only examine the mixing between VSa

� � ASa
� that

is generated by ZV � ZA:

hðVSa
� þ ASa

� ÞðxÞ � ðVSa

 � ASa


 ÞðyÞi
¼ hðZVV

a
� þ ZAA

a
�ÞðxÞ � ðZVV

a

 � ZAA

a

ÞðyÞi

¼ 1
4h½ðZV þ ZAÞðVa

� þ Aa
�ÞðxÞ þ ðZV � ZAÞ

� ðVa
� � Aa

�ÞðxÞ� � ½ðZV þ ZAÞðVa

 � Aa


ÞðyÞ
þ ðZV � ZAÞðVa


 þ Aa

ÞðyÞ�i: (B12)

The product of the left-most operators in the square

brackets on the right-hand side of Eq. (B12) cannot mix

at order mres because of their construction from domain

wall quark fields as explained above. Likewise the product

of the right-most terms also vanishes. However, the two

cross terms have nonzero correlators implying that for the

entire expression to be of order m2
res, the difference ZV �

ZA must be of order ðmresaÞ2, demonstrating the intended

result. A very similar argument can be constructed which

shows that ZS ¼ ZP through order mresa. One must invoke

the flavor structure and, for example, consider correlators

between ðS1 � iS2ÞðxÞ þ ðP1 � iP2ÞðxÞÞ and ðS1 þ iS2Þ�
ðyÞ þ ðP1 þ iP2ÞðyÞÞ which also must vanish in the chiral

limit. Here a ¼ 1, 2 is a specific choice of the eight octet

indices a ¼ 1–8.
The relations in Eqs. (B8)–(B10) were established by

considering the domain wall and continuum theories in a

limit in which the physical quark masses could be ne-

glected, at sufficiently short distances that vacuum chiral

symmetry breaking could be ignored but at sufficiently

long distances that the Symanzik effective theory could

be applied. While this is an excellent regime in which to

establish these theoretical constraints, it is not a practical

one for calculations. Thus, we will now employ these

relations at low energies where vacuum chiral symmetry

breaking is important in order to provide a practical

method to compute ZA.

Since at low energies the left- and right-hand sides of

Eqs. (B4) and (B5) must have identical matrix elements,

the ratio of long-distance correlators computed with the

Symanzik and local currents must give identical constants:

ZV ¼ ZA. Thus, we have established

hVSa
i ðxÞVa

i ðyÞi
hVa

i ðxÞVa
i ðyÞi

¼ hASa
0 ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi ; (B13)

where we have introduced the fixed spatial index i, the
temporal index 0 and sources Va

i ðyÞ and PaðyÞ that will
correspond to those used in our actual calculation. Next we

can use the long-distance equality represented by Eqs. (B2)

and (B3) to write

1 ¼ hVSa
i ðxÞVa

i ðyÞi
hV a

i ðxÞVa
i ðyÞi

; (B14)

ZA ¼ hASa
0 ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi : (B15)
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Then we can combine Eqs. (B13)–(B15) to yield an equa-

tion for ZA which does not involve the Symanzik currents:

ZA ¼ hAa
0ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi �

hV a
i ðxÞVa

i ðyÞi
hVa

i ðxÞVa
i ðyÞi

; (B16)

which determines ZA in terms of four correlators which

we have evaluated directly in our lattice calculation.

In order to relate the discussion of the Symanzik-

improved operators given in Eqs. (B2)–(B7) with the op-

erators appearing in Eq. (B1), we should recognize that the

quantity ZA has been introduced in two places. The most

important is in the relation between the Symanzik current

and the partially conserved domain wall operator in

Eq. (B3). It is this quantity that is determined in

Eq. (B16) and which is needed to give a physical normal-

ization to the axial current matrix elements determined in

our calculation. However, the quantity ZA also appears in

the expression for J5q given in Eq. (B1). For completeness,

we will now demonstrate that these two quantities are in

fact the same up to order ðmresaÞ2.
This is easily done by introducing a flavor-breaking

mass term �qMq into the DWF action, examining the di-

vergence equations obeyed by V a
� and Aa

� and using the

relation ZS ¼ ZP established above. With the additional

mass term the conserved/partially conserved vector and

axial currents obey the lattice divergence equations,

through OðmresaÞ:
��V a

� ¼ �q½�a;M�q; (B17)

��Aa
� ¼ �qf�a;Mg�5qþ 2mres �q�

5q

� ðZA � 1Þ��Aa
�: (B18)

Taking the ZA � 1 term to the left-hand side and recog-

nizing that the scalar and pseudoscalar operators Sa and Pa

are symmetrically normalized (ZS ¼ ZP), we can conclude

that the operators V a
� and ZAAa

� must be related to the

corresponding Symanzik currents by the same factor. This

establishes that our two definitions of ZA are consistent.

We will conclude this analysis with a brief discussion of

the effects of the explicit quark mass, mf, on the operator

product expansion represented by Eq. (B1) and on the

Symanzik-improved operators given in Eqs. (B2)–(B7).

Although mf explicitly connects the s ¼ 0 and s ¼
Ls � 1 walls, it can combine with the midpoint operator

J5q appearing on the left-hand side of Eq. (B1) to create

effects with arbitrary chiral properties. Thus, we expect

multiplicative corrections of the form ð1þ bimfaÞ1	i	4 to

each of the four terms on the right-hand side of Eq. (B1). In

the case of the left-most term the correction is of order

mfmresa while for the remaining three terms the correc-

tions are of order mfmresa
2 or mfmresa

3, all beyond the

level of accuracy of the current paper. The conclusion that

ZV ¼ 1 through order mresa
2 (and order mfa

2) prevents

the appearance of a factor 1þ bðmfaÞ multiplying the ZV

in Eq. (B2). The argument that ZA ¼ ZV and ZS ¼ SP with

corrections of order ðmresaÞ2 applies equally well to the

left-right mixings created by mf but again the allowed

mfmresa
2 and ðmfaÞ2 terms are negligible within our

present power-counting scheme so Eqs. (B4)–(B7) need

no OðmfaÞ corrections. Lastly, consider adding a factor of

the form ð1þ bðmfaÞÞ multiplying the ZA on the right-

hand side of Eq. (B3). As explained above, a similar

correction to ZA appearing in Eq. (B1) carries the addi-

tional suppression of one power of mresa. Since the equal-
ity derived above between the ZA factors appearing in the

divergence equation, Eq. (B1), and the Symanzik-

improved current Aa
�, in Eq. (B3), holds at order mfa

such a 1þ bðmfaÞ factor is not allowed in Eq. (B3). Thus,

no mfa terms need to be introduced into the equations

presented in this appendix.

2. Computational method and results

We have evaluated the two factors in Eq. (B16) to

determine ZA on both the 323 � 64, � ¼ 2:25 (ml ¼
0:004, 0.006, and 0.008) and the 243 � 64,� ¼ 2:13 (ml ¼
0:005, 0.01 and 0.02) ensembles. We used a small subset of

TABLE XLIII. Results for the ratios ZA=ZA, ZV=ZV , and ZV =ZA computed on six ensembles. The rows with quark mass �mres

contain the chiral extrapolation to the light-quark mass ml ¼ �mres. The left-hand portion of the fit range gives that used for the axial

current ratio while the right-hand portion that for the vector current. For the ZV=ZV calculation the data at t and 63� t were combined

for 0 	 t < 32.

� ml ZA=ZA ZV=ZV ZV =ZA Fit range Nmeas

2.13 0.02 0.719 00(20) 0.6956(17) 1.0336(25) 9–54=9–17 50

2.13 0.01 0.71759(16) 0.6998(20) 1.0254(29) 9–54=9–17 50

2.13 0.005 0.71743(30) 0.6991(17) 1.0262(25) 9–54=10–19 105

2.13 �mres 0.71615(36) 0.7019(26) 1.0208(40)

2.25 0.008 0.745 26(12) 0.738 02(55) 1.0098(7) 9–54=9–20 85

2.25 0.006 0.745 23(12) 0.738 53(64) 1.0090(9) 9–54=9–18 76

2.25 0.004 0.74513(15) 0.73871(77) 1.0087(10) 9–54=10–19 166

2.25 �mres 0.744 99(34) 0.7396(17) 1.0073(23)
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these six ensembles and obtained the results given in

Table XLIII. The results presented for ZA=ZA duplicate

those from the calculation of ZA described in Secs. III and

IV. In this appendix we add the factor ZA in the denomi-

nator because we are now determining the deviation of this

factor from unity. We do not simply use the results pre-

sented earlier in the paper because our calculation of

ZV=ZV has been performed on a subset of the configura-

tions analyzed earlier and results for ZA=ZA are needed on

this same subset of configurations if ratios with meaningful

jackknife errors are to be determined.

The ratio ZA=ZA was computed from the same ratio of

current-pseudoscalar correlators studied in Secs III and IV,

using the method specified in Ref. [79]. Similar methods

are used to compute ZV=ZV using the ratio of vector

correlators

ZV

ZV

¼

P3
i¼1

P

~x

hV a
i ð ~x; tÞVa

i ð~0; 0Þi
P

3
i¼1

P

~x

hVa
i ð ~x; tÞVa

i ð~0; 0Þi
; (B19)

an equation expected to be valid for time separations t
much larger than 1 lattice spacing: t � a. Figure 58 shows
the right-hand side of Eq. (B19) as a function of time for

the case of the lightest mass for each of the 323 and 243

ensembles. A constant fit to plateau regions identified by

the horizontal lines was then used to determine the ZV=ZV

on the left-hand side of this equation. Figure 59 displays

the chiral extrapolation of the two quantities ZA=ZA and

ZV=ZV on both sets of ensembles.

Two useful results follow from this appendix. First, the

ratio ZV =ZA differs from unity on our two ensembles and

that difference decreases more rapidly than a2 with in-

creasing �. Thus, we will obtain more accurate results in

our continuum extrapolation from both matrix elements of

the local axial current and our NPR calculations which are

normalized using off-shell Green’s functions containing

the local vector and axial currents if we convert the nor-

malization of these local currents to the usual continuum

normalization by using the ratio ZV=ZV instead of the ratio

ZA=ZA, the quantity which we have used in previous work

FIG. 58 (color online). Plots of the correlator ratio which determines the renormalization factor ZV=ZV as a function of time. The

left panel shows results from the 323, ml ¼ 0:004 ensemble while the right panel shows the result from the 243, ml ¼ 0:005 ensemble.

The horizontal line with error bands in each panel shows the fitting range and the result obtained in each case.

FIG. 59 (color online). The quantities ZA=ZA and ZV=ZV extrapolated to the chiral limit for the 323 (left panel) and 243 (right

panel) ensembles are shown.
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for such conversions. The values of ZV=ZV presented in

Table XLIII are therefore used to normalize the results

presented in the current paper and are the second result

obtained in this appendix. Because these ratios were calcu-

lated on a smaller subset of configurations than were used

for our main results, we have included their statistical

fluctuations as independent within our superjackknife, sta-

tistical error analysis. Since these fluctuations are at or

below the 0.5% level, this omission of possible statistical

correlations is unimportant.

APPENDIX C: STATISTICAL ERRORS OF

REWEIGHTED QUANTITIES

In this appendix we discuss the statistical errors that

should be expected when Monte Carlo data is reweighted

to obtain results for a gauge or fermion action that is

different from that used to generate the data. Throughout

this discussion we will make the assumption that the

reweighting factors are not correlated with the data. Of

course, if this assumption were exactly true then the re-

weighting would not be needed. However, the correlation

between the data and reweighting factors is often small in

practice and neglecting this correlation may well provide a

reasonably accurate view of the resulting errors. As wewill

show, with this assumption the usual analysis of the statis-

tical errors applies easily to reweighted data and yields a

simple, useful formula which we present here.

Consider a quantity x and the corresponding ordered

ensemble of N Monte Carlo configurations with corre-

sponding measured values fxng, 1 	 n 	 N. For each of

these N configurations we will determine a reweighting

factor wn so that the final, reweighted quantity of interest is

given by

hxiN ¼
P

N
n¼1 xnwn
P

N
n¼1 wn

: (C1)

Here the single brackets h. . .iN indicate an average over a

single Monte Carlo ensemble of N samples. In this appen-

dix we are interested in how the statistical fluctuations in

the quantity hxiN are affected by the operation of reweight-

ing. We can then express the true value for xN as

�xN ¼ hhhxiNii; (C2)

where the double brackets hh. . .ii indicate a ‘‘meta’’ average

over many equivalent Monte Carlo ensembles. The statis-

tical fluctuation present in a particular result hxiN can then

be characterized by the average fluctuation of hxiN about

�xN:

Error ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhðhxiN � �xNÞ2ii
q

: (C3)

A quantity such as hxiN , defined in Eq. (C1) as a ratio of
averages, will be a biased estimator of the physical result

which must be determined in the limit N ! 1. Thus, the

meta average �xN ¼ hhhxiNii will differ from the true result

by terms of order 1=N. While these 1=N corrections are not

difficult to enumerate and estimate from our data, these

corrections are not the subject of the present appendix and

will not be considered further here. Instead we will study

how the size of the statistical fluctuations of hxNi about �xN
is affected by the reweighting. Thus, the quantity ErrorðxÞ
defined in Eq. (C3) describes the average deviation of hxiN
from �xN not from the N ! 1 limit of �xN .
We will now work out an expression for ErrorðxÞ in the

case that nearby measurements xn and xnþl in a single

Markov chain (or reweighting factors wn and wnþl) are

correlated but with the assumption that xn and wnþl are

not:

hhðhxiN � �xNÞ2ii ¼ hh
�PN

n¼1 xnwn
P

n
wn

� �xN

��PN
n0¼1 xn0wn0
P

n0
wn0

� �xN

!

ii (C4)

¼ hhð
P

N
n¼1 xnwn � �xN

P
N
n¼1 wnÞð

P
N
n0¼1

xn0wn0 � �xN
P

N
n0¼1

wn0Þ
ðPN

n¼1 wnÞð
P

N
n0¼1

wn0Þ
ii (C5)

¼ hhð
P

N
n¼1ðxn � �xNÞwnÞÞð

P
N
n0¼1

ðxn0 � �xNÞwn0Þ
ðPN

n¼1 wnÞð
P

N
n0¼1

wn0Þ
ii (C6)

¼
P

N
n¼1

P
N�n
l¼1�nfhhðxn � �xNÞðxnþl � �xNÞiihhwnwnþliig

hhPN
n¼1 wnii2

; (C7)
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where in the last line we have used our assumption of the

lack of correlation between the xn and wn to write the

average of their product as the product of their separate

averages. We have also assumed that our sample size N is

sufficiently large that correlated fluctuations of the aver-

ages in the numerator and denominator will be sufficiently

small that the average of the original ratios and products

can be replaced by the corresponding ratios and products of

the individual averages.

This result can be cast in a simple form if we define the

three averages:

�x2 ¼ hhðxn � �xNÞ2ii; (C8)

�w ¼ hhwnii; (C9)

w2 ¼ hhw2
nii (C10)

(where �x2 is the usual width of the distribution of the

measured quantity xn) and the two autocorrelation func-

tions:

CðlÞ ¼ hhðxn � �xNÞðxnþl � �xNÞii
�x2

; (C11)

WðlÞ ¼ hhwnwnþlii
w2

; (C12)

defined so that Cð0Þ ¼ Wð0Þ ¼ 1. Making the conven-

tional assumption that the range of l over which the corre-

lation function CðlÞ is nonzero is small compared to the

sample size N and using the quantities defined above, we

can rewrite Eq. (C7) as

hhðhxiN � �xNÞ2ii ¼
�x2

PLmax

l¼�Lmax
CðlÞWðlÞw2

Nð �wÞ2 (C13)

¼ �x2
�corr
N

w2

ð �wÞ2 ; (C14)

where the autocorrelation time �corr is defined as

�corr ¼
XLmax

l¼�Lmax

CðlÞWðlÞ: (C15)

The limit Lmax is chosen to be larger than the region within

which CðlÞ is nonzero and has been introduced as a re-

minder that when working with a single finite sample, one

must take care to evaluate the limit of large N before the

limit of large Lmax. Finally, Eq. (C14) can be written in the

conventional form

Error ðxÞ ¼
ffiffiffiffiffiffiffiffi

�x2

Neff

s

; (C16)

where the effective number of configurations Neff is

given by

Neff ¼
N

�corr

�w2

w2
: (C17)

This result makes precise a number of aspects of re-

weighting that may be useful to understand. In the case that

there are no autocorrelations so �corr ¼ 1, the ratio �w2=w2

expresses the degree to which the reweighting process

selectively samples the original data and degrades the

initial statistics. The general inequality �w2=w2 	 1 (a con-
sequence of the Schwartz inequality) is saturated only in

the case that the reweighting factors wn do not vary with n.
In the extreme case that a single sample wn dominates the

averages then �w2=w2 ¼ 1=N and Neff ¼ 1. Thus, in

the case of uncorrelated data (which is the case for most

of the results presented here) we should expect the statis-

tical fluctuations to grow as the degree of reweighting

increases by the factor w2= �w2.

Including autocorrelations makes the effects of re-

weighting on the size of the statistical fluctuations less

certain because the behavior of the factors 1=�corr and

�w2=w2 in Eq. (C17) become entangled. In the limit in

which the autocorrelation time associated with the mea-

sured quantity xn alone,

�x ¼
XLmax

l¼�Lmax

CðlÞ; (C18)

becomes much larger than that of the reweighting factor

wn, then the majority of the sum in Eq. (C15) contributing

to �corr will come from values of l where hhwnwnþlii �
hhwii2 so that

�corr � �x
�w2

w2
: (C19)

In this case the error given by Eq. (C16) reduces to the

standard expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x2�x=N
p

that holds if no reweighting

is performed. Of course, this is easy to understand. When

such long autocorrelation times are involved, the average

over the autocorrelation time is providing an average over

the reweighting factorswn which is sufficiently precise that

the error-enhancing fluctuations in the reweighting factors

are averaged away. Given the large size of the fluctuations

between the reweighting factors and the relatively short

autocorrelation times seen in our data, it is unlikely that

this averaging would be seen in the results presented here.

A second type of behavior for �corr occurs if the wn are

relatively uncorrelated and w2 � �w2 so that only the l ¼ 0
term contributes to the sum in Eq. (C15) giving �corr ¼ 1.
In this case reweighting has removed the effects of auto-

correlation but increased the statistical fluctuations by the

factor w2= �w2 which was assumed to be large. Here the

fluctuation-enhancing effects of autocorrelations and re-

weighting are not compounded.

Y. AOKI et al. PHYSICAL REVIEW D 83, 074508 (2011)

074508-70



[1] C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev.

D 78, 114509 (2008).

[2] D. J. Antonio et al. (RBC and UKQCD Collaborations),

Phys. Rev. D 75, 114501 (2007).

[3] C. Allton et al. (RBC and UKQCD Collaborations), Phys.

Rev. D 76, 014504 (2007).

[4] D. J. Antonio et al. (RBC Collaboration), Phys. Rev. Lett.

100, 032001 (2008).

[5] P. A. Boyle et al., Phys. Rev. Lett. 100, 141601

(2008).

[6] P. Boyle, J. Flynn, A. Juttner, C. Kelly, C. Maynard et al.,

Eur. Phys. J. C 69, 159 (2010).

[7] T. Yamazaki et al. (RBCþ UKQCD), Phys. Rev. Lett.
100, 171602 (2008).

[8] T. Yamazaki et al., Phys. Rev. D 79, 114505 (2009).

[9] Y. Aoki et al., Phys. Rev. D 82, 014501 (2010).

[10] Y. Aoki et al. (RBC-UKQCD Collaboration), Phys. Rev. D

78, 054505 (2008).

[11] N. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu et al.,

Phys. Rev. Lett. 105, 241601 (2010).

[12] C. Albertus et al., Phys. Rev. D 82, 014505 (2010).

[13] In this Introduction we combine the statistical and system-

atic errors in the results. The separate errors are presented

in the following sections.

[14] Y. Aoki et al., Phys. Rev. D 78, 054510 (2008).

[15] C. Sturm et al., Phys. Rev. D 80, 014501 (2009).

[16] M. Gorbahn and S. Jager, Phys. Rev. D 82, 114001

(2010).

[17] L. G. Almeida and C. Sturm, Phys. Rev. D 82, 054017

(2010).

[18] S. R. Sharpe, arXiv:0706.0218.

[19] D. J. Antonio et al. (RBC and UKQCD Collaborations),

Phys. Rev. D 77, 014509 (2008).

[20] Y. Shamir, Nucl. Phys. B406, 90 (1993).

[21] Y. Iwasaki, Report No. UTHEP-118.

[22] M. Hasenbusch and K. Jansen, Nucl. Phys. B659, 299

(2003).

[23] T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706

(2006).

[24] C. Urbach, K. Jansen, A. Shindler, and U. Wenger,

Comput. Phys. Commun. 174, 87 (2006).

[25] P. A. Boyle, Comput. Phys. Commun. 180, 2739 (2009).

[26] Y. Aoki et al., Phys. Rev. D 72, 114505 (2005).

[27] M. Luscher and F. Palombi, Proc. Sci., LATTICE2008

(2008) 049 [arXiv:0810.0946].

[28] A. Hasenfratz, R. Hoffmann, and S. Schaefer, Phys. Rev.

D 78, 014515 (2008).

[29] C. Jung, Proc. Sci., LAT2009 (2009) 002

[arXiv:1001.0941].

[30] H. Ohki et al., Proc. Sci. LAT2009 (2009) 124

[arXiv:0910.3271].

[31] S. Aoki et al. (PACS-CS Collaboration), Phys. Rev. D 81,

074503 (2010).

[32] R. Baron et al. (ETM Collaboration), Proc. Sci.,

LATTICE2008 (2008) 094 [arXiv:0810.3807].

[33] T. Ishikawa, Y. Aoki, and T. Izubuchi, Proc. Sci.,

LAT2009 (2009) 035 [arXiv:1003.2182].

[34] K. Ogawa and S. Hashimoto, Prog. Theor. Phys. 114, 609

(2005).

[35] Y, Aoki et al. (RBC-UKQCD Collaboration),

arXiv:1012.4178.

[36] We use the convention that the prime 0 in m0
resðmfÞ implies

that the corresponding residual mass has been determined

at a particular value of the light quark mass. mres (without

the 0) is defined by mres � m0
resð0Þ.

[37] T. Blum et al. (RBC Collaboration), Phys. Rev. D 68,

114506 (2003).

[38] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, and

T.-M. Yan, Phys. Rev. D 17, 3090 (1978).

[39] C. Alexandrou et al., Nucl. Phys. B414, 815 (1994).

[40] F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys. Rev. D

73, 054509 (2006).

[41] T. Blum (RBC and UKQCD Collaborations), Proc. Sci.,

LATTICE2008 (2008) 096.

[42] C.M. Maynard (RBC and UKQCD Collaborations), Proc.

Sci., LAT2009 (2009) 091 [arXiv:1001.5203].

[43] S. N. Syritsyn et al., Phys. Rev. D 81, 034507

(2010).

[44] Of course the varying quark masses mudð�Þ and msð�Þ
will also appear in the coefficients of these Oða2Þ terms

but when expressed in physical units such mass depen-

dence will be of order a4.
[45] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A.

Vladikas, Nucl. Phys. B445, 81 (1995).

[46] Since N, the number of different �’s for which we

currently have results, is 2, there is only a single set of

ratios R2
a, Z

2
l , and Z2

h. When specifically discussing our

data, we therefore drop the superfix 2 and simply write Ra,

Zl and Zh.

[47] L. Lellouch, Proc. Sci., LATTICE2008 (2009) 015

[arXiv:0902.4545].

[48] S. Durr et al., Science 322, 1224 (2008).

[49] S. R. Sharpe, Phys. Rev. D 46, 3146 (1992).

[50] R. Mawhinney (RBC Collaboration), Proc. Sci., LAT2009

(2009) 081 [aXiv:0910.3194].

[51] E. E. Scholz, Proc. Sci. LAT2009 (2009) 005.

[arXiv:0911.2191.]

[52] R. Mawhinney (RBC-UKQCD Collaboration),

Proceedings of the XXVIII International Symposium on

Lattice Field Theory (to be published).

[53] A. Bazavov et al. (MILC), Proc. Sci., LAT2009 (2009)

079 [arXiv:0910.3618].

[54] C. Aubin et al., Phys. Rev. D 70, 094505 (2004).

[55] Y. Aoki (RBC-UKQCD Collaboration), Proc. Sci.,

LATTICE2008 (2008) 222 [arXiv:0901.2595].

[56] Y. Aoki, Proc. Sci., LAT2009 (2009) 012

[arXiv:1005.2339].

[57] J.-R. Cudell, A. Le Yaouanc, and C. Pittori, Phys. Lett. B

454, 105 (1999).

[58] L. Giusti and A. Vladikas, Phys. Lett. B 488, 303

(2000).

[59] K. G. Chetyrkin and A. Retey, Nucl. Phys. B583, 3

(2000).

[60] J. A. Gracey, Nucl. Phys. B662, 247 (2003).

[61] T. van Ritbergen, J. A.M. Vermaseren, and S.A. Larin,

Phys. Lett. B 400, 379 (1997).

[62] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).

[63] M. Constantinou, V. Lubicz, H. Panagopoulos, and F.

Stylianou, J. High Energy Phys. 10 (2009) 064.

[64] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253

(1980).

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-71



[65] H. Leutwyler and A.V. Smilga, Phys. Rev. D 46, 5607

(1992).

[66] M. F. Atiyah and I.M. Singer, Bull. Am. Math. Soc. 69,

422 (1963).

[67] M. Luscher, Commun. Math. Phys. 85, 39 (1982).

[68] P. de Forcrand, M. Garcia Perez, and I.-O. Stamatescu,

Nucl. Phys. B499, 409 (1997).

[69] M. Falcioni, M. L. Paciello, G. Parisi, and B. Taglienti,

Nucl. Phys. B251, 624 (1985).

[70] M. Albanese et al. (APE Collaboration), Phys. Lett. B 192,

163 (1987).

[71] Y. Aoki et al., Phys. Rev. D 73, 094507 (2006).

[72] Y.-Y. Mao and T.-W. Chiu (TWQCD Collaboration), Phys.

Rev. D 80, 034502 (2009).

[73] M. Lightman and E. Goode (RBC-UKQCD

Collaboration), Proc. Sci. LATTICE2010 (2010) 313

[arXiv:1101.2473].

[74] For completeness, since those have not been included in

Appendix C of [1], the finite-volume corrections for the

kaon decay constant in SU(2)-ChPT read

�LfK
xy ¼ � 1

4�f2

�
�x þ �l

2
�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x þ �l

2

s

L

�

þ �l � 2�x

4
�1ð

ffiffiffiffiffiffi
�x

p
LÞ
�

:

See Appendix C of [1] for an explanation of the notation.

[75] L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio, and N.

Tantalo, J. High Energy Phys. 02 (2007) 082.

[76] J. D. Bratt et al. (LHPC Collaboration), Phys. Rev. D 82,

094502 (2010).

[77] V. Furman and Y. Shamir, Nucl. Phys. B439, 54 (1995).

[78] N. Christ (RBC and UKQCD Collaborations), Proc. Sci.,

LAT2005 (2006) 345.

[79] T. Blum et al., Phys. Rev. D 69, 074502 (2004).

[80] P. Boyle et al., IBM J. Res. Dev. 49, 351 (2005).

[81] P. A. Boyle, C. Jung, and T. Wettig (QCDOC), in

Computing in High Energy and Nuclear Physics 2003

Conference Proceedings, econf C0303241, THIT003

(2003).

[82] P. A. Boyle et al., J. Phys. Conf. Ser. 16, 129 (2005).

Y. AOKI et al. PHYSICAL REVIEW D 83, 074508 (2011)

074508-72


