000154412 001__ 154412
000154412 005__ 20210129213909.0
000154412 0247_ $$2doi$$a10.5194/acpd-14-18277-2014
000154412 0247_ $$2ISSN$$a1680-7367
000154412 0247_ $$2ISSN$$a1680-7375
000154412 0247_ $$2Handle$$a2128/5822
000154412 0247_ $$2altmetric$$aaltmetric:2498504
000154412 037__ $$aFZJ-2014-03759
000154412 082__ $$a550
000154412 1001_ $$0P:(DE-HGF)0$$aOrr, A.$$b0$$eCorresponding Author
000154412 245__ $$aInclusion of mountain wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model
000154412 260__ $$c2014
000154412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s154412
000154412 3367_ $$2DataCite$$aOutput Types/Journal article
000154412 3367_ $$00$$2EndNote$$aJournal Article
000154412 3367_ $$2BibTeX$$aARTICLE
000154412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154412 3367_ $$2DRIVER$$aarticle
000154412 520__ $$aAn important source of polar stratospheric clouds (PSCs), which play a crucial role in controlling polar stratospheric ozone depletion, is from the temperature fluctuations induced by mountain waves. However, this formation mechanism is usually missing in chemistry–climate models because these temperature fluctuations are neither resolved nor parameterised. Here, we investigate the representation of stratospheric mountain wave-induced temperature fluctuations by the UK Met Office Unified Model (UM) at high and low spatial resolution against Atmospheric Infrared Sounder satellite observations for three case studies over the Antarctic Peninsula. At a high horizontal resolution (4 km) the mesoscale configuration of the UM correctly simulates the magnitude, timing, and location of the measured temperature fluctuations. By comparison, at a low horizontal resolution (2.5° × 3.75°) the climate configuration fails to resolve such disturbances. However, it is demonstrated that the temperature fluctuations computed by a mountain wave parameterisation scheme inserted into the climate configuration (which computes the temperature fluctuations due to unresolved mountain waves) are in excellent agreement with the mesoscale configuration responses. The parameterisation was subsequently used to compute the local mountain wave-induced cooling phases in the chemistry–climate configuration of the UM. This increased stratospheric cooling was passed to the PSC scheme of the chemistry–climate model, and caused a 30–50% increase in PSC surface area density over the Antarctic Peninsula compared to a 30 year control simulation.
000154412 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000154412 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154412 7001_ $$0P:(DE-HGF)0$$aHosking, J. S.$$b1
000154412 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b2$$ufzj
000154412 7001_ $$0P:(DE-HGF)0$$aKeeble, J.$$b3
000154412 7001_ $$0P:(DE-HGF)0$$aDean, S. M.$$b4
000154412 7001_ $$0P:(DE-HGF)0$$aRoscoe, H. K.$$b5
000154412 7001_ $$0P:(DE-HGF)0$$aAbraham, N. L.$$b6
000154412 7001_ $$0P:(DE-HGF)0$$aVosper, S.$$b7
000154412 7001_ $$0P:(DE-HGF)0$$aBraesicke, P.$$b8
000154412 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-14-18277-2014$$gVol. 14, no. 12, p. 18277 - 18314$$n12$$p18277 - 18314$$tAtmospheric chemistry and physics / Discussions$$v14$$x1680-7375$$y2014
000154412 8564_ $$uhttps://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.pdf$$yOpenAccess
000154412 8564_ $$uhttps://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000154412 8564_ $$uhttps://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000154412 8564_ $$uhttps://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000154412 909CO $$ooai:juser.fz-juelich.de:154412$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000154412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154412 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000154412 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000154412 9141_ $$y2014
000154412 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000154412 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000154412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000154412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154412 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000154412 920__ $$lyes
000154412 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000154412 980__ $$ajournal
000154412 980__ $$aVDB
000154412 980__ $$aUNRESTRICTED
000154412 980__ $$aFullTexts
000154412 980__ $$aI:(DE-Juel1)JSC-20090406
000154412 9801_ $$aFullTexts