001     154412
005     20210129213909.0
024 7 _ |a 10.5194/acpd-14-18277-2014
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/5822
|2 Handle
024 7 _ |a altmetric:2498504
|2 altmetric
037 _ _ |a FZJ-2014-03759
082 _ _ |a 550
100 1 _ |a Orr, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Inclusion of mountain wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model
260 _ _ |c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 154412
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a An important source of polar stratospheric clouds (PSCs), which play a crucial role in controlling polar stratospheric ozone depletion, is from the temperature fluctuations induced by mountain waves. However, this formation mechanism is usually missing in chemistry–climate models because these temperature fluctuations are neither resolved nor parameterised. Here, we investigate the representation of stratospheric mountain wave-induced temperature fluctuations by the UK Met Office Unified Model (UM) at high and low spatial resolution against Atmospheric Infrared Sounder satellite observations for three case studies over the Antarctic Peninsula. At a high horizontal resolution (4 km) the mesoscale configuration of the UM correctly simulates the magnitude, timing, and location of the measured temperature fluctuations. By comparison, at a low horizontal resolution (2.5° × 3.75°) the climate configuration fails to resolve such disturbances. However, it is demonstrated that the temperature fluctuations computed by a mountain wave parameterisation scheme inserted into the climate configuration (which computes the temperature fluctuations due to unresolved mountain waves) are in excellent agreement with the mesoscale configuration responses. The parameterisation was subsequently used to compute the local mountain wave-induced cooling phases in the chemistry–climate configuration of the UM. This increased stratospheric cooling was passed to the PSC scheme of the chemistry–climate model, and caused a 30–50% increase in PSC surface area density over the Antarctic Peninsula compared to a 30 year control simulation.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hosking, J. S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 2
|u fzj
700 1 _ |a Keeble, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dean, S. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Roscoe, H. K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Abraham, N. L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vosper, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Braesicke, P.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.5194/acpd-14-18277-2014
|g Vol. 14, no. 12, p. 18277 - 18314
|0 PERI:(DE-600)2069857-4
|n 12
|p 18277 - 18314
|t Atmospheric chemistry and physics / Discussions
|v 14
|y 2014
|x 1680-7375
856 4 _ |u https://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/154412/files/FZJ-2014-03759.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:154412
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129125
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21