| Home > Publications database > Impact of doped microcrystalline silicon oxide layers on crystalline silicon surface passivation > print |
| 001 | 154494 | ||
| 005 | 20240708133735.0 | ||
| 024 | 7 | _ | |a 10.1139/cjp-2013-0627 |2 doi |
| 024 | 7 | _ | |a 1208-6045 |2 ISSN |
| 024 | 7 | _ | |a 0008-4204 |2 ISSN |
| 024 | 7 | _ | |a WOS:000339379500046 |2 WOS |
| 024 | 7 | _ | |a altmetric:2342163 |2 altmetric |
| 037 | _ | _ | |a FZJ-2014-03812 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Ding, K. |0 P:(DE-Juel1)130233 |b 0 |e Corresponding Author |u fzj |
| 245 | _ | _ | |a Impact of doped microcrystalline silicon oxide layers on crystalline silicon surface passivation |
| 260 | _ | _ | |a Ottawa, Ontario |c 2014 |b NCR Research Press |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1405488236_22674 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a This paper reports on a comparative study of the impact of phosphorous and boron doped microcrystalline silicon oxide (μc-SiOx:H) layers on the surface passivation of n- and p-type doped crystalline silicon float zone wafers in correlation with the material properties of the μc-SiOx:H layers. The poor surface passivation of μc-SiOx:H films deposited directly on c-Si surface might be attributed to the incorporation of doping impurities, the surface damaging by ion bombardment and (or) the low amount of hydrogen at the μc-SiOx:H/c-Si interface. The different impact of n- and p-type doped μc-SiOx:H films on the passivation of n- and p-type doped wafers with and without an additional a-SiOx:H passivation layer are correlated to the differences in the strength of the field effect at the heterojunction and to the presence of boron atoms that can cause the rupture of Si–H bonds. |
| 536 | _ | _ | |a 111 - Thin Film Photovoltaics (POF2-111) |0 G:(DE-HGF)POF2-111 |c POF2-111 |f POF II |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |a Aeberhard, U. |0 P:(DE-Juel1)130210 |b 1 |u fzj |
| 700 | 1 | _ | |a Lambertz, A. |0 P:(DE-Juel1)130263 |b 2 |u fzj |
| 700 | 1 | _ | |a Smirnov, V. |0 P:(DE-Juel1)130297 |b 3 |u fzj |
| 700 | 1 | _ | |a Holländer, B. |0 P:(DE-Juel1)125595 |b 4 |u fzj |
| 700 | 1 | _ | |a Finger, F. |0 P:(DE-Juel1)130238 |b 5 |u fzj |
| 700 | 1 | _ | |a Rau, U. |0 P:(DE-Juel1)143905 |b 6 |u fzj |
| 773 | _ | _ | |a 10.1139/cjp-2013-0627 |g Vol. 92, no. 7/8, p. 758 - 762 |0 PERI:(DE-600)2021497-2 |n 7/8 |p 758 - 762 |t Canadian journal of physics |v 92 |y 2014 |x 1208-6045 |
| 909 | C | O | |o oai:juser.fz-juelich.de:154494 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130233 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130210 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130263 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130297 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)125595 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130238 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)143905 |
| 913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |2 G:(DE-HGF)POF3-100 |v Solar cells of the next generation |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF2-110 |0 G:(DE-HGF)POF2-111 |2 G:(DE-HGF)POF2-100 |v Thin Film Photovoltaics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
| 914 | 1 | _ | |y 2014 |
| 915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|