001     154495
005     20240712101013.0
024 7 _ |a 10.1038/NGEO2199
|2 doi
024 7 _ |a WOS:000341635100010
|2 WOS
024 7 _ |a altmetric:2513114
|2 altmetric
037 _ _ |a FZJ-2014-03813
082 _ _ |a 550
100 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 0
|e Corresponding Author
111 2 _ |d 2014-07-13
245 _ _ |a Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere
260 _ _ |a London
|c 2014
|b Nature Publ. Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1411043973_17272
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The removal of trace gases from the troposphere is, in most cases, initialized by reactions with hydroxyl radicals, and the products of these reactions are eventually deposited on the Earth's surface. The concentration of these hydroxyl radicals is therefore a measure of atmospheric self-cleansing. In theory, hydroxyl-radical concentrations can be enhanced by the recycling of some of the reaction products. The only known efficient recycling process involves nitrogen oxide and leads to production of ozone, yet observations in regions with high hydrocarbon and low nitrogen oxide concentrations show substantially elevated hydroxyl-radical concentrations, up to ten times higher than expected. If we normalize observed hydroxyl-radical concentrations to the maximum achievable in model calculations with variable nitrogen oxide concentrations, this photochemical coordinate system uncovers a common feature in almost all of these observations: even in the presence of inadequate amounts of nitrogen oxides, hydroxyl-radical concentrations are enhanced to the theoretical maximum obtainable at very much higher nitrogen oxide concentrations. This means that this important part of the self-cleansing capability of the atmosphere is working at maximum efficiency even in regions with a high burden of biogenic hydrocarbons and low nitrogen oxide concentration. Since these processes do not involve nitrogen oxides, tropospheric ozone production is greatly reduced compared with the expectation from current theory
536 _ _ |a 233 - Trace gas and aerosol processes in the troposphere (POF2-233)
|0 G:(DE-HGF)POF2-233
|c POF2-233
|f POF II
|x 0
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 1
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 2
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 3
700 1 _ |a Brauers, Theo
|0 P:(DE-Juel1)16306
|b 4
700 1 _ |a Chang, Chih-Chung
|0 Extern
|b 5
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 6
700 1 _ |a Häseler, Rolf
|0 P:(DE-Juel1)5628
|b 7
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 8
700 1 _ |a Hu, Min
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kita, Kazuyuki
|0 Extern
|b 10
700 1 _ |a Kondo, Yutaka
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 12
700 1 _ |a Lou, Shengrong
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Oebel, Andreas
|0 P:(DE-Juel1)6599
|b 14
700 1 _ |a Shao, Min
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Zeng, Limin
|0 Extern
|b 16
700 1 _ |a Zhu, Tong
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 19
773 _ _ |a 10.1038/NGEO2199
|0 PERI:(DE-600)2396648-8
|p 559–563
|t Nature geoscience
|v 7
|y 2014
|x 1752-0908
856 4 _ |u https://juser.fz-juelich.de/record/154495/files/FZJ-2014-03813.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:154495
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)16306
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)5628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)6599
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)16324
913 2 _ |a DE-HGF
|b POF III
|l Marine, Küsten- und Polare Systeme
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Atmosphäre und Klima
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-233
|2 G:(DE-HGF)POF2-200
|v Trace gas and aerosol processes in the troposphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21