000154551 001__ 154551
000154551 005__ 20240708132717.0
000154551 037__ $$aFZJ-2014-03859
000154551 041__ $$aEnglish
000154551 1001_ $$0P:(DE-Juel1)141800$$aRöhrens, Daniel$$b0$$eCorresponding Author$$ufzj
000154551 1112_ $$a20th World Hydrogen Energy Conference$$cGwangju$$d2014-06-16 - 2014-06-20$$gWHEC 2014$$wSouth Korea
000154551 245__ $$aAdvances beyond traditional SOFC cell designs
000154551 260__ $$c2014
000154551 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1406115217_19614$$xOther
000154551 3367_ $$033$$2EndNote$$aConference Paper
000154551 3367_ $$2DataCite$$aOther
000154551 3367_ $$2ORCID$$aLECTURE_SPEECH
000154551 3367_ $$2DRIVER$$aconferenceObject
000154551 3367_ $$2BibTeX$$aINPROCEEDINGS
000154551 520__ $$aResearch and development of Solid Oxide Fuel Cell (SOFC) technology has been carried out at the Jülich research center for more than 20 years. A standard cell design based on a porous nickel cermet has been established and tested with stationary conditions, for which a power density of 1.25 W/cm2 at 800°C in H2 was obtained. In order to broaden the field of possible applications, new cell designs have been developed. Among those are metal-supported SOFCs (MSC), which promise increased robustness against thermal-, mechanical and chemical stresses, as well as cheaper production costs. While the MSC development may find an application in mobile devices another cell design concept aims at much lower operating temperatures. For this cell type a very thin zirconia membrane is deposited on top of a standard anode support via a multi-step sol/gel-route. With this setup a reduction of the operating temperature to 600°C with a power output of 1.25 W/cm2 could be demonstrated.
000154551 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000154551 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000154551 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b1$$ufzj
000154551 7001_ $$0P:(DE-Juel1)129610$$aHan, Feng$$b2$$ufzj
000154551 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b3$$ufzj
000154551 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b4$$ufzj
000154551 7001_ $$0P:(DE-HGF)0$$aHaydn, Markus$$b5
000154551 7001_ $$0P:(DE-HGF)0$$aSchafbauer, Wolfgang$$b6
000154551 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b7$$ufzj
000154551 773__ $$y2014
000154551 909CO $$ooai:juser.fz-juelich.de:154551$$pVDB
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141800$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129610$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000154551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000154551 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000154551 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000154551 9141_ $$y2014
000154551 920__ $$lyes
000154551 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000154551 980__ $$aconf
000154551 980__ $$aVDB
000154551 980__ $$aI:(DE-Juel1)IEK-1-20101013
000154551 980__ $$aUNRESTRICTED
000154551 981__ $$aI:(DE-Juel1)IMD-2-20101013