001 | 154551 | ||
005 | 20240708132717.0 | ||
037 | _ | _ | |a FZJ-2014-03859 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Röhrens, Daniel |0 P:(DE-Juel1)141800 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a 20th World Hydrogen Energy Conference |g WHEC 2014 |c Gwangju |d 2014-06-16 - 2014-06-20 |w South Korea |
245 | _ | _ | |a Advances beyond traditional SOFC cell designs |
260 | _ | _ | |c 2014 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1406115217_19614 |2 PUB:(DE-HGF) |x Other |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a Research and development of Solid Oxide Fuel Cell (SOFC) technology has been carried out at the Jülich research center for more than 20 years. A standard cell design based on a porous nickel cermet has been established and tested with stationary conditions, for which a power density of 1.25 W/cm2 at 800°C in H2 was obtained. In order to broaden the field of possible applications, new cell designs have been developed. Among those are metal-supported SOFCs (MSC), which promise increased robustness against thermal-, mechanical and chemical stresses, as well as cheaper production costs. While the MSC development may find an application in mobile devices another cell design concept aims at much lower operating temperatures. For this cell type a very thin zirconia membrane is deposited on top of a standard anode support via a multi-step sol/gel-route. With this setup a reduction of the operating temperature to 600°C with a power output of 1.25 W/cm2 could be demonstrated. |
536 | _ | _ | |a 123 - Fuel Cells (POF2-123) |0 G:(DE-HGF)POF2-123 |c POF2-123 |f POF II |x 0 |
536 | _ | _ | |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602) |0 G:(DE-Juel1)SOFC-20140602 |c SOFC-20140602 |f SOFC |x 1 |
700 | 1 | _ | |a Menzler, Norbert H. |0 P:(DE-Juel1)129636 |b 1 |u fzj |
700 | 1 | _ | |a Han, Feng |0 P:(DE-Juel1)129610 |b 2 |u fzj |
700 | 1 | _ | |a Mücke, Robert |0 P:(DE-Juel1)129641 |b 3 |u fzj |
700 | 1 | _ | |a Sebold, Doris |0 P:(DE-Juel1)129662 |b 4 |u fzj |
700 | 1 | _ | |a Haydn, Markus |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Schafbauer, Wolfgang |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Buchkremer, Hans Peter |0 P:(DE-Juel1)129594 |b 7 |u fzj |
773 | _ | _ | |y 2014 |
909 | C | O | |o oai:juser.fz-juelich.de:154551 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)141800 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129636 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129610 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129641 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129662 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129594 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |2 G:(DE-HGF)POF3-100 |v Fuel Cells |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-123 |2 G:(DE-HGF)POF2-100 |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|