000154552 001__ 154552
000154552 005__ 20240708132717.0
000154552 037__ $$aFZJ-2014-03860
000154552 041__ $$aEnglish
000154552 1001_ $$0P:(DE-Juel1)141800$$aRöhrens, Daniel$$b0$$eCorresponding Author$$ufzj
000154552 1112_ $$a11th European SOFC and SOE Forum 2014$$cLuzern$$d2014-07-01 - 2014-07-04$$gEFCF 2014$$wSwitzerland
000154552 245__ $$aMicrostructural Analysis of a metal-supported SOFC after redox-cycling
000154552 260__ $$c2014
000154552 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1406115112_19621$$xOther
000154552 3367_ $$033$$2EndNote$$aConference Paper
000154552 3367_ $$2DataCite$$aOther
000154552 3367_ $$2ORCID$$aLECTURE_SPEECH
000154552 3367_ $$2DRIVER$$aconferenceObject
000154552 3367_ $$2BibTeX$$aINPROCEEDINGS
000154552 520__ $$aA metal-supported SOFC (MSC) has been developed with the aim of an application in an auxiliary power unit (APU) for mobile systems. This cell design is expected to be more robust towards thermo-, mechanical- and chemical stresses that arise during operation of the SOFC-system when compared to the state-of-the-art anode supported cells (ASC). One of the most important cell-degradation pathways is the (partial) oxidation of the anode, due to oxygen diffusion into the fuel side of the stack during system shutdown. The oxidation of the nickel catalyst leads to an expansion of the anode and strain is induced within the cell, which results in microstructural degradation if a critical degree of oxidation is exceeded. We exposed MSC-halfcells to cyclic oxidation conditions by introducing air to the fuel side electrode followed by subsequent reduction in Ar/H2(4%). A detailed microstructural analysis of these samples is presented. Due to the novel MSC-concept, a higher critical degree of oxidation of nickel is tolerated before irreversible damage and cell failure are observed.
000154552 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000154552 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000154552 7001_ $$0P:(DE-Juel1)129595$$aBüchler, Oliver$$b1
000154552 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
000154552 7001_ $$0P:(DE-HGF)0$$aSchafbauer, Wolfgang$$b3
000154552 7001_ $$0P:(DE-HGF)0$$aFranco, Thomas$$b4
000154552 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5$$ufzj
000154552 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000154552 773__ $$y2014
000154552 909CO $$ooai:juser.fz-juelich.de:154552$$pVDB
000154552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141800$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000154552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000154552 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000154552 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000154552 9141_ $$y2014
000154552 920__ $$lyes
000154552 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000154552 980__ $$aconf
000154552 980__ $$aVDB
000154552 980__ $$aI:(DE-Juel1)IEK-1-20101013
000154552 980__ $$aUNRESTRICTED
000154552 981__ $$aI:(DE-Juel1)IMD-2-20101013