000154628 001__ 154628
000154628 005__ 20240712100851.0
000154628 0247_ $$2doi$$a10.5194/acp-14-7341-2014
000154628 0247_ $$2ISSN$$a1680-7316
000154628 0247_ $$2ISSN$$a1680-7324
000154628 0247_ $$2Handle$$a2128/5850
000154628 0247_ $$2Handle$$a2128/7951
000154628 0247_ $$2WOS$$aWOS:000339934900013
000154628 037__ $$aFZJ-2014-03918
000154628 082__ $$a550
000154628 1001_ $$0P:(DE-HGF)0$$aCirisan, A.$$b0$$eCorresponding Author
000154628 245__ $$aBalloon-borne match measurements of midlatitude cirrus clouds
000154628 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000154628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s154628
000154628 3367_ $$2DataCite$$aOutput Types/Journal article
000154628 3367_ $$00$$2EndNote$$aJournal Article
000154628 3367_ $$2BibTeX$$aARTICLE
000154628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154628 3367_ $$2DRIVER$$aarticle
000154628 520__ $$aObservations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg−1) and high crystal number densities (> 1 cm−3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear-sky or cloudy-sky conditions, highlighting the importance of proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive 4 km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed-phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the special humidity conditions in the upper troposphere.
000154628 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000154628 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154628 7001_ $$0P:(DE-HGF)0$$aLuo, B. P.$$b1
000154628 7001_ $$0P:(DE-Juel1)159462$$aEngel, I.$$b2$$ufzj
000154628 7001_ $$0P:(DE-HGF)0$$aWienhold, F. G.$$b3
000154628 7001_ $$0P:(DE-Juel1)143769$$aSprenger, M.$$b4$$ufzj
000154628 7001_ $$0P:(DE-HGF)0$$aKrieger, U. K.$$b5
000154628 7001_ $$0P:(DE-HGF)0$$aWeers, U.$$b6
000154628 7001_ $$0P:(DE-HGF)0$$aRomanens, G.$$b7
000154628 7001_ $$0P:(DE-HGF)0$$aLevrat, G.$$b8
000154628 7001_ $$0P:(DE-HGF)0$$aJeannet, P.$$b9
000154628 7001_ $$0P:(DE-HGF)0$$aRuffieux, D.$$b10
000154628 7001_ $$0P:(DE-HGF)0$$aPhilipona, R.$$b11
000154628 7001_ $$0P:(DE-HGF)0$$aCalpini, B.$$b12
000154628 7001_ $$0P:(DE-HGF)0$$aSpichtinger, P.$$b13
000154628 7001_ $$0P:(DE-HGF)0$$aPeter, T.$$b14
000154628 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-7341-2014$$gVol. 14, no. 14, p. 7341 - 7365$$n14$$p7341 - 7365$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000154628 8564_ $$uhttps://juser.fz-juelich.de/record/154628/files/FZJ-2014-03918.pdf$$yOpenAccess
000154628 8564_ $$uhttps://juser.fz-juelich.de/record/154628/files/FZJ-2014-03918.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000154628 8564_ $$uhttps://juser.fz-juelich.de/record/154628/files/FZJ-2014-03918.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000154628 8564_ $$uhttps://juser.fz-juelich.de/record/154628/files/FZJ-2014-03918.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000154628 909CO $$ooai:juser.fz-juelich.de:154628$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000154628 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000154628 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154628 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154628 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154628 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154628 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154628 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154628 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154628 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000154628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000154628 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000154628 9141_ $$y2014
000154628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143769$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000154628 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000154628 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000154628 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000154628 9801_ $$aFullTexts
000154628 980__ $$ajournal
000154628 980__ $$aVDB
000154628 980__ $$aUNRESTRICTED
000154628 980__ $$aFullTexts
000154628 980__ $$aI:(DE-Juel1)IEK-7-20101013
000154628 981__ $$aI:(DE-Juel1)ICE-4-20101013